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Department of Informatics, King’s College London
Strand, WC2R 2LS, London, United Kingdom

{e.desena|zoran.cvetkovic}@kcl.ac.uk
huseyin@hacihabiboglu.org

ABSTRACT

Spherical microphone arrays provide a flexible solution to obtaining
higher-order directivity patterns, which are useful in audio record-
ing and reproduction. A general systematic approach to the design
of directivity patterns for spherical microphone arrays is introduced
in this paper. The directivity patterns are obtained by optimizing a
cost function which is a convex combination of a front-back energy
ratio and a smoothness term. Most of the standard directivity pat-
terns - i.e. omnidirectional, cardioid, subcardioid, hypercardioid and
supercardioid - are particular solutions of this optimization problem
with specific values of two free parameters: the angle of the frontal
sector, and the convex combination factor. By varying these two
parameters, more general solutions of practical use are obtained.

Index Terms— Microphones, directivity pattern, beamforming,
spherical microphone array.

1. INTRODUCTION

Directional microphones have been a subject of research since the
rise of commercial broadcasting in the early 1920s. Their develop-
ment was based on the need to emphasize the voice of news presen-
ters by suppressing surrounding noise sources. One of the earliest
directional microphones is the cardioid microphone. The amplitude
response to a plane wave incident from the direction θ - commonly
referred to as directivity pattern - for the cardioid microphone is
Γ(θ) = 0.5+0.5 cos θ. Most of the directional microphones used in
the recording industry today are members of the first-order cardioid
family, i.e. microphones whose directivity patterns are of the kind
Γ(θ) = (1− γ) + γ cos θ, with γ ∈ [0, 1].

The majority of the microphones available in the market to-
day serve specific purposes, and have fixed directivity patterns. For
γ = 0.5 the resulting directivity is cardioid, whereas subcardioid
has γ = 0.3 [1]. Other patterns like supercardioid and hypercardioid
are designed to satisfy specific criteria. Supercardioid is defined as
the pattern that exhibits the maximum front-back ratio (γ = 0.63),
whereas hypercardioid is the microphone with the maximum direc-
tivity index (γ = 0.75) [1].

Due to the high cost and lack of flexibility of having a differ-
ent microphone for each application, several techniques to obtain
variable-pattern microphones have been developed since the mid
1930s [1]. Usually a slider serves as the interface to set the value of γ
for variable-pattern microphones. Sound engineers and technicians

The work reported in this paper was funded by the Engineering and
Physical Sciences Research Council (EPSRC) Research Grant EP/F001142/1
“Perceptual Sound Field Reconstruction and Coherent Emulation”.

set the value so as to obtain one of the above mentioned patterns, or
hybrids between them, according to their taste and the requirements
of the recording scenario.

Recently, there has been significant interest in spherical micro-
phone arrays [2, 3, 4, 5]. Meyer and Elko [3] proposed an array
composed of a number of pressure microphones appropriately po-
sitioned on a rigid sphere. This microphone array can be used in
several ways, including sound-field recordings, sound-field analy-
sis, and beamforming. Higher-order directivity patterns of the kind
Γ(θ) =

∑N
n=0 an cosn(θ) can be obtained by such microphone,

greatly enlarging the design space of available patterns.
The coefficients a0, ..., aN of higher-order versions of standard

directivity patterns are already known [6]. Although these standard
patterns meet the needs of sound engineers up to a certain degree,
directivity patterns corresponding to less specific criteria are also of
practical use. As the order of the microphone increases, obtaining
such directivity patterns by individually adjusting the N coefficients
becomes difficult, if not impossible. A design framework to over-
come this limitation is presented in this paper.

This paper is organized as follows. In Sec. 2 a very brief
overview of the theory of spherical microphone arrays is given,
and the standard directivity patterns are characterized. The general-
ized design method for microphone directivity patterns is presented
in Sec. 3. Conclusions are drawn in Sec. 4.

2. BACKGROUND

The pressure field due to a plane wave with wavenumber k, incident
from the direction (θ, φ), as observed on a sphere Ωs centered in the
origin of the reference system, can be expanded as [7, 4, 8]:

p(rs,k) = 4π

∞∑
n=0

infn(krs)

n∑
m=−n

Y mn (θ, φ)Y mn (θs, φs)
∗, (1)

where i =
√
−1 is the complex unit, (·)∗ denotes the complex

conjugate, Y mn is the spherical harmonic of order n and degree m,
rs = [rs, θs, φs] identifies the point on the sphere of radius rs, and

fn(x) =

{
jn(x) Ωs open sphere

jn(x)− j′n(x)

h′
n(x)

hn(x) Ωs rigid sphere,
(2)

where jn is the spherical Bessel function of order n, and hn are the
spherical Hankel functions of first kind. The spherical harmonics
exhibit the property of being orthonormal:∫

Ωs

Y mn (θs, φs)Y
m′
n′ (θs, φs)

∗ dΩs = δn−n′δm−m′ . (3)



Let us now assume that the surface of the sphere Ωs is populated by
infinitely many infinitesimal pressure microphones. If the pressure
recorded at each point is weighted by:

Wm′
n′ (θs, φs, krs) =

Y m
′

n′ (θs, φs)

4πin′fn′(krs)
, (4)

the total output is:∫
Ωs

p(rs,k)Wm′
n′ (θs, φs, krs) dΩs = Y m

′
n′ (θ, φ), (5)

where the property (3) has been used [7]. This shows that the spatial
response to a plane-wave incident from the direction (θ, φ), com-
monly referred to as directivity pattern, is exactly Y m

′
n′ (θ, φ). By

using different values of n′ and m′ in (4), all spherical harmonic
components can be obtained, and therefore it is possible to synthe-
size any square integrable directivity function [8] as a weighted infi-
nite sum of spherical harmonics.

The conclusion of eq. (5) is valid under the assumption that the
pressure at each arbitrary point is known, which is not feasible.
However, if the surface is sampled using pressure microphones at
specific points [7, 4, 5], the discrete version of property (3) holds
for spherical harmonics up to a certain order, N . This upper bound
N depends on the number of pressure microphones, and the chosen
spatial sampling pattern.

In the context of this paper, only spherical harmonics of de-
gree m = 0 are used. In other words, only axisymmetrical (φ-
independent) directivity patterns are considered in this paper. In this
way directivity patterns of the kind:

Γ(θ) =

N∑
n=0

bnY
0
n (θ, φ) =

N∑
n=0

bn

√
2n+ 1

4π
Pn (cos θ) (6)

are obtained, where Pn(x) is the Legendre function of the first kind.
Since Pn(x) is a polynomial of degree n, the directivity function can
be expressed as:

Γa(θ) = a0 + a1 cos θ + a2 cos2 θ + ...+ aN cosN θ (7)

where we explicitly add the subscript a to denote the vector of co-
efficients a = [a0, a1, ..., aN ] ∈ RN+1. Since any normalization
of (7) would not affect the directional characteristic of the micro-
phone, it is convenient to set a0 = 1 − a1 − a2 − ... − aN , such
that Γa (0) = 1. It should also be observed that Γa (θ) is an even
function of θ. Therefore the design problem can be restricted to the
angular sector [0, π] without loss of generality.

The most widely used directivity patterns are subcardioid, car-
dioid, hypercardioid and supercardioid. The directivity pattern of
theN th-order cardioid microphone is Γ(θ) = (0.5 + 0.5 cos θ)N [6].
Subcardioid microphones, which are frequently used in classical
recordings, are defined only as first-order microphones, and have
a = [0.7, 0.3]. Unlike cardioid and subcardioid, other directiv-
ity patterns, such as supercardioid and hypercardioid, are designed
to satisfy specific criteria. Supercardioid is the pattern with the
maximum front-back ratio [6], which is defined as:

F (a) =

∫ π/2
0
|Γa(θ)|2 sin θ dθ∫ π

π/2
|Γa(θ)|2 sin θ dθ

, (8)

under the assumption of spherically isotropic noise and axisymmet-
ric directivity pattern. The coefficients a1, ..., aN that maximize (8)
are already known, and can be found in [6].

Hypercardioid, is the microphone with the maximum directivity
factor. The directivity factor, under the assumption of spherically
isotropic noise and axisymmetric directivity pattern, is defined [6]
as:

Q(a) =
|Γa(0)|2

1
π

∫ π
0
|Γa(θ)|2 sin θ dθ

. (9)

As with the case of the supercardioid pattern, the coefficients which
maximize (9) are known [6].

3. GENERALIZED DIRECTIVITY PATTERN DESIGN
METHOD

As discussed in Sec. 2, the coefficients a are already known for the
mentioned optimal criteria - maximum front/back ratio, and maxi-
mum directivity factor. However, there are applications in which the
sources of interest are located in an angular sector different from π or
in a narrow sector in front of the microphone. Furthermore, a more
uniform directivity throughout the angular sector of interest would
be preferable, such that the sources of interest are recorded with the
same intensity. In this section we formulate a cost function whose
minima provides directivity patterns which satisfy these two criteria.
It is then shown that popular directivity patterns are also particular
solutions of the same optimization problem.

3.1. Optimization problem definition

We propose selecting the coefficients a as the solution of the mini-
mization problem:

ã (α, λ) = argmin
a

Φa (α, λ) subject to Γa(θ) ≤ 1∀θ, (10)

where the cost function is given by:

Φa(α, λ) = λ

∫ π
α
|Γa(θ)|2 sin θ dθ∫ α

0
|Γa(θ)|2 sin θ dθ

+ (1−λ)

∫ α

0

|Γ′a(θ)|2 sin θ dθ,

(11)
with λ ∈ [0, 1] and α ∈ [0, π]. This cost function is a convex com-
bination of two terms; (a) the ratio between the directional gains in
the frontal sector [0, α] and in the complementary sector [α, π], and
(b) a term related to the smoothness of the directivity pattern in the
angular sector [0, α]. The optimization problem defined in this man-
ner generates a family of directivity patterns, each corresponding to
a fixed value of (α, λ).

The cost function is designed in this manner so that it allows
for explicit control of two parameters which are most important for
many recording applications. The angle α can be set to cover the
angular region where the sound sources of interest are located, while
λ controls the relative importance of the uniformity of the directivity
in the desired region (such that the sources of interest are recorded
at the same level) and the suppression of sources outside of it. From
this point of view, the proposed method provides a convenient inter-
face to microphone adjustment, in the sense that it directly sets the
two immediately relevant parameters α and λ, rather than adjusting
theN coefficients in an ad-hoc manner without a clear impact on the
shape of the directivity.

Other choices of the cost function could have been made. For
instance, (11) could be replaced by:

λ

∫ π

α

|Γa(θ)|2 sin θ dθ + (1− λ)

∫ α

0

|1− Γa(θ)|2 sin θ dθ, (12)

where the two terms reflect the leakage of energy from outside of
the region of interest and the uniformity of the directivity pattern in



0.0 Π

8

Π

4
3 Π

8

Π

2
5 Π

8

3 Π

4

7 Π

8
Π

0.0

0.2

0.4

0.6

0.8

1.0

Α

Λ

Cardioid HIL
Α»1.7,Λ»0.51

Subcardioid
Α»2.2,Λ»0.56

Supercard.HIL
Α=Π�2,Λ=1

Hypercard.HIL
Α®0,Λ=1

Omni
Α=Π,Λ=0

(a) First-order

0.0 Π

8

Π

4
3 Π

8

Π

2
5 Π

8

3 Π

4

7 Π

8
Π

0.0

0.2

0.4

0.6

0.8

1.0

Α

Λ

Cardioid HIIL
Α»3.1,Λ»1.0

Supercard.HIIL
Α=Π�2,Λ=1

Hypercard.HIIL
Α®0,Λ=1

Omni
Α=Π,Λ=0

(b) Second-order

0.0 Π

8

Π

4
3 Π

8

Π

2
5 Π

8

3 Π

4

7 Π

8
Π

0.0

0.2

0.4

0.6

0.8

1.0

Α

Λ

Cardioid HIIIL
Α»1.8,Λ»0.94

Supercard.HIIIL
Α=Π�2,Λ=1

Hypercard.HIIIL
Α®0,Λ=1

Omni
Α=Π,Λ=0

(c) Third-order

Fig. 1. Overview of the design space with markers on the standard directivity patterns for microphone orders N = 1, 2, 3.

the desired range, respectively. However, we observed that solutions
of such an optimization problem usually exhibit undesired ripples.
Furthermore, the standard directivity patterns did not fit in the op-
timization framework, while on the other hand they are particular
solutions of the optimization problem defined in (10),(11).

3.2. Relation to standard directivity patterns

Standard directivity patterns, and their relation to the cost function
proposed in this paper are discussed below.

a) Supercardioid. When λ = 1 and α = π
2

, the cost function
(11) becomes:

Φa

(π
2
, 1
)

=

∫ π
π
2
|Γa(θ)|2 sin θ dθ∫ π

2
0
|Γa(θ)|2 sin θ dθ

(13)

that is the inverse of the front-back ratio (8) for axisymmetric di-
rectivity patterns and under the assumption of spherically isotropic
noise1. As a consequence, the solution of the associated minimiza-
tion problem (10) is the supercardioid pattern.

b) Hypercardioid. When λ = 1 and α → 0, the optimization
problem reduces to:

ã (0, 1) = argmin
a

∫ π

0

|Γa(θ)|2 sin θ dθ (15)

whose solution is the hypercardioid pattern. In fact, given the con-
straint Γa (0) = 1, solving the problem (15) is equivalent to maxi-
mizing the directivity factor (9).

c) Omnidirectional. When λ = 0 and α = π, the cost function
becomes:

Φa(π, 0) =

∫ π

0

|Γ′a(θ)|2 sin θ dθ. (16)

Since |Γ′a(θ)|2 and sin θ are non-negative functions of θ ∈ [0, π],
the solution of the associated minimization problem is the constant
function Γ (θ) = 1, i.e. the omnidirectional pattern.

d) Subcardioid and cardioid. These directivity patterns were
not originally designed to satisfy any specific optimal criteria, and
are not particular cases of the cost function (11). However, it is

1This paper is focused on the case of spherically isotropic noise. The case
of cylindrically isotropic noise can be studied by redefining the cost function
(11) as

Φa(α, λ) = λ

∫ π
α |Γa(θ)|2 dθ∫ α
0 |Γa(θ)|2 dθ

+ (1− λ)

∫ α

0
|Γ′a(θ)|2 dθ. (14)

Table 1. Relation to standard directivity patterns.
Pattern N α λ Error δ [dB]
Omnidirectional 0 π 0 −∞
Hypercardioid Any 0 1 −∞
Supercardioid Any π

2
1 −∞

Subcardioid 1 2.190 0.5602 � −100

Cardioid (I) 1 1.696 0.5066 � −100

Cardioid (II) 2 3.099 1.000 −87

Cardioid (III) 3 1.785 0.9399 −52

Cardioid (IV) 4 2.464 1.000 −69

shown below that they are very close to solutions of the optimization
problem.

In order to measure the distance between a desired directivity
pattern Γd(θ) (e.g. N th-order cardioid or subcardioid) and the space
of solutions generated by (10),(11), the following approach is used:
among all the directivity functions, Γã(α,λ), that are solutions of the
problem (10),(11), the closest to Γd(θ) in the least square sense is
found, and the average residual is used as a distance metric:

δ = min
α,λ

1

2π

∫ 2π

0

∣∣Γã(α,λ)(θ)− Γd(θ)
∣∣2 dθ . (17)

Table 1 shows errors of closest solutions, obtained using a grid
search, for subcardioid and first to fourth order cardioid micro-
phones. For the first-order patterns, the approximation error
∆ = 10 log10 δ is less than −100dB. Moreover, while their val-
ues of λ are similar, the value of α for subcardioid is larger than that
of cardioid, supporting the fact that subcardioid microphones have a
wider aperture with flat response. Higher-order cardioid patterns, all
have errors smaller than −50dB which is negligible for all practical
purposes, thus indicating that they fit in the proposed optimization
problem.

The results presented so far are summarized for N = 1, 2, 3 in
Fig 1. Every point in these figures is representative of an (α, λ) pair,
and its associated optimal directivity pattern Γã(α,λ).

3.3. Design examples

The optimization framework described in (10) and (11) generates a
much richer class of solutions than the standard directivity patterns
discussed earlier. Some of these solutions are shown in Fig. 2. These
solutions were obtained by means of the Nelder-Mead optimization
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Fig. 2. Examples of directivity patterns generated by the design framework for different (α, λ) pairs, and for microphone orders N = 1, 2, 3.
The figures are plotted in dB scale.

algorithm, which was found to be reliable and very fast for the pur-
pose of this application. However, any other constrained optimiza-
tion algorithms can also be used2.

Several directivity patterns of practical use can be obtained by
means of the proposed design method. For instance, small values
of α produce directivity patterns similar to hypercardioid, but with
a slightly larger frontal beam. These patterns can be used to record
more than one instrument (or more than one actor, in the case of the
film industry) from distance. As a second example, there may be a
need to record all sound sources in the frontal plane (e.g. orches-
tra recording). The working line on the (α, λ) plane, is α = π

2
in

this case. At the top end (λ = 1), the supercardioid microphone is
the one that maximizes the front-back ratio. However, the supercar-
dioid pattern causes sound sources near π/2 to be highly attenuated.
This drawback can be alleviated by selecting smaller values of λ,
thus trading a smaller front-back ratio with a smoother directivity
function in the frontal plane.

Directivity patterns that reject sound sources in a given angular
range at the back of the microphone (i.e. for θ ∈ [π−ε, π+ε]), could
also be of interest. Two practical uses could be to cancel sound from
a noise source with known position, or to reduce acoustic feedback
in acoustic reinforcement systems. To this end, the easiest solution
for an N -order microphone would be to impose the polynomial (7)
to have a zero of multiplicity N at θ = π. However, in this way,
the directivity would abruptly go to zero in a region around θ =
π, without control on the width of such a region. A better control
would be available if the proposed method is employed. This kind
of directivity patterns is realized for α → π, and values of λ close
to unity, i.e. the points on the (α, λ) plane near the top right corner.

The proposed method can also be used for applications where
an automatic selection of the directivity pattern is needed. For in-
stance, in a teleconferencing scenario, the directivity pattern could
be widened as the estimation of the position of the speaker becomes
less accurate. As a similar case, the built-in microphone of a video
camera could be coupled with the optical lens, so as to provide an
“acoustical zoom” that matches the optical zoom. To this end, the
operating line between the two points (0, 1) and (π, 0) can be used,
where the patterns evolve from highly directional to omnidirectional.

2A Mathematica notebook which demonstrates the general-
ized design approach proposed in this paper is made available at
http://www.enzo.desena.name/gddp . The software also provides guid-
ance for selecting λ other than by the visual inspection of the directivity
pattern plot. Possible approaches are setting λ as to obtain (i) a certain
attenuation at a given angle, (ii) a certain front-back ratio, or (ii) a certain
directivity index.

4. CONCLUSIONS

A generalized design method for directivity patterns of spherical mi-
crophone arrays was introduced in this paper. The proposed method
yields the coefficients of the microphone directivity pattern that min-
imize a cost function that has two free parameters, α and λ, which
have an application-oriented meaning, thus providing a simple in-
terface for sound engineers and technicians. It was found that most
of the standard directivity patterns are solutions of this minimization
problem with particular pairs of λ and α. As the two parameters can
be freely varied, more general solutions can be obtained. Several
examples of practical use were identified.
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