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Introduction
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Aims

Set the topic in its scientific context
Provide an overview of the topic and classification of its
subtopics
Outline the key technical approaches and give references
to relevant algorithms

it’s not a class
Give insights and perspectives
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Overview
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History

Earliest known mention of reverberation, “The Republic”,
written by Plato around 380 BC:
“And what if sound echoed off the prison wall opposite them?
When any of the passers-by spoke, don’t you think they’d be
bound to assume that the sound came from a passing shadow?”
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Pioneering scientific work:
Rayleigh, “The theory of sound,” 1877
Sabine, “Collected papers on acoustics,” 1922
Bolt, “Theory of speech masking by reverberation,” 1949
Schroeder, “Natural sounding artificial reverberation,”
1961
Haas, “The influence of a single echo on the audibility of
speech,” 1972
Allen, “Image method for efficiently simulating
small-room acoustics,” 1979
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More Recent Influences

Hand-held → Hands-free (1990’s)
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More Recent Influences

Hand-held → Hands-free (2000’s)

Introduction TUTORIAL T4 EUSIPCO 2017 - 12 / 136

© 2017 Imperial College London



More Recent Influences

Hand-held → Hands-free (2010’s)
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Other Influences

Speech-in-noise
intelligibility is
significantly degraded by
reverberation
Many children are
schooled in a second
language
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Immersive Audio
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Recent Major Research Initiatives
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Tutorial Outline

1. Introduction

2. Fundamentals of Room Acoustics

3. Measures of Reverberation

4. Measurement and Estimation of Acoustic Impulse
Responses

5. Room Acoustics Modelling and Simulation

6. Dereverberation Processing Methods
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Summary and Questions/Comments

Context and motivation for reverberation and
dereverberation
Emphasize the importance for telecommunications but
also other sectors and influences

Any questions so far?
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Fundamentals of
Room Acoustics
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Outline of the Section

Start with components of acoustic impulse response
(AIR), some definitions, and examples of measured AIR
Fundamentals on physical modelling of sound, wave
equation and modal description of reverberation
Elements of perception of room acoustics
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Acoustic Impulse Response (AIR)

Copyright © 2015 Rational Acoustics

Components of AIR h(t) in rooms:

Direct line-of-sight (LOS)
Early reflections: relatively sparse first echoes
Late reverberation: so densely populated with echoes that
it is best to characterise the response statistically.
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Some definitions

Mixing time:

Transition point between early reflections and late
reverberation

Reverberation time (T60):

Time taken for sound to decay 60 dB from its initial level
(more detailed definition in next section)
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Measured AIR samples
St Patrick’s Church in
Patrington (recording by
Foteinou and Murphy)
T60 = 1.86 s

Bathroom (recording by van
Saane) T60 = 0.35 s

Inchindown oil storage
(recording by Cox) T60 = 75 s
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Wave equation

Sound propagation governed by the PDE [1]:

△p− 1

c2
∂2p

∂t2
= s

where c = 343 [m/s], p pressure, s source distribution
Need initial and boundary conditions to find solution
Example of boundary condition:

∂p

∂t
= −cZw∇p · n

where n normal at boundary, Zw wall impedance
Equation admits closed form solution only in few cases
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Modal description of reverberation

Using monochromatic sound source, Helmholtz equation
[1]:

△p̂+
(ω
c

)2

p̂ = ŝ

Using separation of variables, and point source:

p̂ =
c2

V

∞∑
m=0

ψm(x′)ψm(x)
ω2 − ω2

m − 2jδmωm

,

where V volume, x observation point, x′ source position,
ψm(x) eigenfunctions of problem, ωm and δm real and
imaginary part of problem’s eigenvalues, respectively
Equivalent to a parallel of second-order resonant modes
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Modal description of reverberation (cont’d)

Density of modes increases as f 2 [Kuttruff, 2000] [1]

Similarly to early/late in impulse response, frequency
response of a reverberant room can be divided in:

Low-frequency sparse distribution of resonant modes
Modes packed so densely that they merge to form
random frequency response
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Schroeder frequency

Transition point between two regions called Schroeder
frequency [Schroeder, 1962] [2]: Fc = 2000

√
T60

V

Examples

Bathroom V = 10m3, T60 = 0.35 s ⇒ Fc = 374 Hz
Concert hall V = 2700m3, T60 = 2 s ⇒ Fc = 54 Hz
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Perception of Sound in Rooms

Copyright © 2015 Rational Acoustics

Governed by complex and not fully understood perceptual
phenomena [3, 4]

1. Early reflections: affect spaciousness, envelopment, and
apparent source width.

2. Late reverberation: precise structure not important, but
2.1 T60(ω): affects impression of size
2.2 Echo density: affects perceived texture of reverberation
2.3 Mode density: if insufficient can yield metallic sound
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Summary

AIR in a room: LOS, early reflection and late reverb
Wave equation gives physical model for propagation
Wave equation requires initial and boundary conditions to
find solution, and solution hard to find in closed form
Solution for point-like sound source yields modal
description of reverberation
Modes well separated at low frequencies
Room perception governed by complex phenomena
Accurate rendering of early reflections is important
We are not sensitive to precise structure of late reverb
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Questions/Comments

Questions
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Measures of Reverberation
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Why are Reverberation Measures Important?

Significant aspect of speech quality
not specifically included in general measures

Significant aspect of audio/music quality
usually aesthetically judged

Adaptively control dereverberation processing
switch off if not needed

‘Awareness’ of room acoustics
exploited in other processing

Modelling for Automatic Speech Recognition (ASR)
multi-condition training
control distribution of reverberation in the training set

Parts of this tutorial will emphasize speech applications
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Acoustic Impulse Response
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Classes of Measures of Reverberation

Room acoustics based
T60 - reverberation time

Model based
DRR - direct to reverberation ratio
C50 - clarity index

Perceptually based
PLR - Perceived Level of Reverberation (opinion-based)
Qm - (instrumental)

... others
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Physical Acoustical Characteristics
Early reflections

echoes
Late reflections

reverberation

→ ratios
→ spectral variation (RTS)
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Energy Decay Curve
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If the AIR of the room, h(t), is known, the energy decay curve
(EDC) can be obtained from the Schroeder integral [1]

EDC(t) =

∫ ∞

t
h2(τ)dτ

Measures of Reverberation TUTORIAL T4 EUSIPCO 2017 - 36 / 136



Taxonomy

measurement method instrumental vs. opinion-based

prior information intrusive vs. non-intrusive
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Reverberation Time

The reverberation time, T60, is defined for a diffuse sound field
as the time in seconds required for the EDC to decay by 60 dB

Sabine’s formula [5]:

T60 ∝
V

αSabineA
s

V is the enclosed volume
αSabineA is the total sound absorption in the room with
surface area A
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Examples

> 5 s Loss of speech intelligibility is substantial

20 ms Soundproof booth,  dry sound

R
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300 ms Office - reverb is not distracting, 
no loss of intelligibility but damages ASR

500 ms Classroom - reverb is distracting, 
loss of intelligibility when also noisy, 
damages ASR performance

1.5 to 3.5 s Auditoria - reverb is good for music,
significant loss of speech intelligibility
 - New York, Carnegie Hall: 1.7 s

(Qualitative comments refer to typical listening distances.)

varies across a range of frequencies
Reverberation time

does not vary with position in the room
Reverberation time
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Critical Distance

Distance Dc from the source at which the sound energy
density due to the direct-path component, Ed, equals the
sound energy density due to the reverberant component, Er

[1]

Dc ≈ 0.11

√
QV

πT60

with source directivity factor Q and room volume V
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Direct to Reverberation Ratio

Direct to Reverberation Ratio (DRR) is given by

DRR = 10 log10


nd∑
n=0

h2(n)

∞∑
n=nd+1

h2(n)

 dB,

samples of the AIR, hn, indexed n = 0, . . . , nd represent
direct-path propagation
samples of the AIR indexed n > nd represent late
reverberation
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Clarity Index

Clarity Index is given by

C = 10 log10


ne∑
n=0

h2(n)

∞∑
n=ne+1

h2(n)

 dB

where nefs can be chosen as 50 ms
denoted by C50

motivated by the human auditory system
interprets multipath signal components as a single signal
if the components’ times of arrival differ by less than
around 50 ms
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Speech-to-Reverberation Modulation Energy Ratio

Falk et al, 2010: “A Non-Intrusive Quality and Intelligibility
Measure of Reverberant and Dereverberated Speech” [6]

SRMR operates in the modulation domain
spectrum of temporal envelopes in gammatone bands

SRMR =

∑4
k=1 Ēk∑K∗
k=5 Ēk

where Ēk is the average modulation energy in band k

Approach
anechoic speech contains modulation frequencies ranging
2-20 Hz
reverberation causes smearing of modulation energy into
higher modulation frequencies

Measures of Reverberation TUTORIAL T4 EUSIPCO 2017 - 43 / 136



Examples
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Building entrance with ambient noise
Source distance 2.5 m
T60 0.85 s
Reverberant signal to noise ratio -10 dB to 30 dB
Source data CHiME 3 (WSJ)
Kaldi ASR
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Effects on Automatic Speech Recognition

RSNR - reverberant signal-to-noise ratio
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Effects on speech intelligibility

Combination of noise and reverberation is strongly
problematic
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Perceived Level of Reverberation
How does reverberation affect the human perceptual system?

Perceived Level of Reverberation (PLR) measure
adaptively control hearing aid signal processing

Previous instrumental estimators of PLR (intrusive):

Allen [7] P ∝ −T60 σ2
R

de Lima [8] Q = − T60 σ
2
R

(DRR)γ

Vallado [9] Qm = −(T60)
α (σ2

R)
β

(DRR)γ

σR is the Room Spectral Variance - a measure of colouration due to convolution with the RIR
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Non-intrusive PLR estimation

Eaton et al, 2017, “Estimation of the perceived level of
reverberation using non-intrusive single-channel variance of decay
rates”[10]

Feature: Negative Side Variance of decay rates
NSV

Data: Use an existing intrusive measure Qm

As much data for training as desired!

Data-driven approaches like this are effective given sufficient
labelled training data
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Why Qm ?

Qm measure has been extensively validated
Qm is therefore used to label reverberant speech to be
used for training the proposed algorithm

Qm is intrusive ⇒ OK for training
Qm is instrumental ⇒ plenty of examples to learn from
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Energy decay rate

At each freq in STFT domain, the amplitude envelope of
each sound/phoneme has a decay phase

anechoic: decays are intrinsic decay envelopes of speech
reverb: decay rates are slower and extended in time

Energy decay rate λh of AIR can be found by linear
regression[11] in each frequency bin over short windows

In reverberation, decay rate results from decays from
anechoic speech, x, convolved with the AIR h

λx∗h(t, f)
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Negative Side Variance of Decay Rates
Hypothesis:
“The variance in decay rates in both the diffuse and near fields
is related to PLR”

somewhat similar to a measure of modulation
we only consider negative gradients for ‘decays’
written as σ2(λx∗h−)

PLR ∝ Qm = gW (σ2(λx∗h−))

Learn from training data
Mapping Function

Compute from the signals
Decay Rates
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Training
Each point represents one AIR in the training corpus of 203

Measures of Reverberation TUTORIAL T4 EUSIPCO 2017 - 53 / 136



NSV vs Qm in the training data

20,300 reverberant speech files from 203 AIRs in the
training corpus grouped by ranges of Qm

learn a 3rd order polynomial by least squares regression
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Listening Test

Aim to determine the true PLR of the evaluation corpus
28 listeners with self-assessed normal hearing
3 speech utterances for each of 10 AIRs
MUSHRAR [12]

scoring range is inverted - more reverberant signal
receives a higher score
hidden reference, R, and anchor, A, signals use low and
high reverberation

See www.acousp.org for a list of acoustic signal processing
resources, specifically impulse response datasets
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Listening Test Results
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Comparative PLR Estimation Results

Absolute Pearson correlation coefficients for each measure
evaluated against the listening test results
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Computational Complexity

Relative Real-time Factor
normalized to SRMR
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Summary and Questions

Motivation for reverberation measures
Intrusive vs non-intrusive
Examples
Measures based on room acoustics and AIR models
New method for perceived level of reverberation based on
efficient data-driven approach

Questions
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Measurement and Estimation
of Acoustic Impulse Responses
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AIR measurement: Introduction
Direct AIR measurement requires reproduction of
impulse signal (band-limited to freq. range of interest)
Physically challenging and undesirable for several reasons

©Trevor Cox, Creative Commons License ©Pat Brown, Synergetic Audio Concepts

Indirect AIR measurement = system identification

Reproduce stimulus and measure room response
Estimate AIR from {stimulus, response} pair
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AIR measurement: Challenges

©DREAMS ITN ©Magnus Schäfer, RWTH Aachen

Challenges when measuring/estimating AIRs

Reproducibility
Loudspeaker artefacts
Noise robustness
Identifiability / persistence of excitation
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AIR measurement: Reproducibility
Reproduction of stimuli in different
measurement trials requires loudspeaker
playback of prerecorded stimuli
Accurate measurement of loudspeaker and
microphone positions crucial when
measuring AIRs for spatial audio applications
(e.g. beamforming, rendering, localization)
Documenting room and measurement
setup (room geometry, boundary materials,
temperature, measurement hardware, stimuli)
strongly recommended
Covering hardware and other objects with
absorption foam advisable to avoid spurious
reflections

©Jesper Kjær Nielsen, Aalborg University

©Jesper Kjær Nielsen, Aalborg University

©Neofytos Kaplanis, Bang & Olufsen

©Jesper Kjær Nielsen, Aalborg University
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AIR measurement: Loudspeaker artefacts
Linear loudspeaker distortion: usually not compensated
Nonlinear even-harmonic distortion: eliminable with
Exponential Sine Sweep (ESS) method [13, 14]

©Giuliano Bernardi & Toon van Waterschoot, KU Leuven

Nonlinear odd-harmonic and impulsive (e.g. rub & buzz)
distortion: requires careful level calibration [15]
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AIR measurement: Noise robustness

Organize measurements during silent periods (overnight)
Increase length of measurement stimuli:

Doubling amount of measurement data yields 3 dB
increase of measurement SNR
Result only holds for broadband random noise, not for
impulsive noise or nonlinear artefacts

Synchronous averaging of responses to short
stimuli[16]:

SNR increase as above, with possibility to discard
responses affected by impulsive noise
Applicable to many types of stimuli, e.g. ESS,
maximum-length sequences (MLS), inverse repeated
sequence (IRS)
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AIR measurement: Identifiability
System identification setup for AIR estimation
System identification setup 

RIR h + s =

2

6664

s(0)
s(1)
...

s(N � 1)

3

7775

model ĥ + 
− 

x =

2

6664

x(0)
x(1)
...

x(N � 1)

3

7775

b =
⇥
b(0) b(1) . . . b(N � 1)

⇤T

©Toon van Waterschoot, KU Leuven

Signal model: x = Sh + b


x(0)
x(1)

...
x(N − 1)

 =


s(0) s(−1) . . . s(−L + 1)
s(1) s(0) . . . s(−L + 2)

...
...

. . .
...

s(N − 1) s(N − 2) . . . s(N − L)
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h1
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 +


b(0)
b(1)

...
b(N − 1)
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AIR measurement: Identifiability

AIR identifiable only when stimulus is persistently exciting:
rank(S) ≥ L

Densely sampled AIRs are excessively long: O(L) = 104

Lack of identifiability occurs with speech/audio stimuli
Regularization is crucial for (online) AIR estimation
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AIR measurement: Identifiability

Tikhonov regularization (e.g. least squares AIR estimate)

min
ĥ

∥x − Sĥ∥2+λ∥ĥ∥2 ⇒ ĥ = (STS+λI)−1STx

Levenberg-Marquardt regularization (e.g. normalized least
mean squares adaptive AIR estimate)

min
ĥ(n)

∥x(n)− sT (n)ĥ(n)︸ ︷︷ ︸
e(n)

∥2+λ∥ĥ(n)− ĥ(n− 1)∥2

⇒ ĥ(n) = ĥ(n) + s(n)e(n)
sT (n)s(n)+λ

Optimal and generalized regularization achievable in
Bayesian framework [17]
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AIR measurement databases
Selection of open-source AIR measurement databases for different
room types and measurement setups (www.acousp.org):

GTAC Database (2017): 1 room, 34560 AIRs [18]

SUBRIR Database (2017): 1 room, 48 very LF AIRs [15]

ACE Challenge Corpus (2016): 7 rooms, 700 AIRs, incl. noise
measurements [19]

SMARD Database (2014): 1 room, ca. 1000 AIRs, incl.
reverberant signals [20]

C4DM Database (2010): 3 rooms, 468 AIRs, incl. B-format
recordings [21]

Aachen IR Database (2009-2010): 10 rooms, 58 AIRs,
binaural/dual-mic [22]

Oldenburg IR Database (2009): 5 rooms, 2846 AIRs,
binaural, incl. noise/HRTF measurements [23]

MARDY Database (2006): 1 room, 72 AIRs [24]

Open AIR Library (2010-2017): platform for sharing AIRs [25]

Measurement and Estimation of Acoustic Impulse Responses TUTORIAL T4 EUSIPCO 2017 - 69 / 136

www.acousp.org


AIR interpolation

AIR is point-to-point response

How to measure spatial variations of room acoustics?
AIR interpolation yields AIR estimates for virtual
source/observer positions
Interpolation often relies on wave-based model

©Niccoló Antonello, KU Leuven
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Wave Field Analysis
AIR measurements from dense linear array (microphone
spacing = 5 cm) reveal wave patterns [26]

Patterns can be interpolated and extrapolated using
plane-wave assumption

September 2014, Leuven, Belgium 
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illustrates that cj and ch represent the phase velocities in the
j and h direction, respectively,
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The ray parameters p and q are defined as the inverse of the
phase velocities and hence to be interpreted as the horizontal
and vertical phase slowness of the plane wave, respectively,
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such that

p21q25c22. ~4!

Equation ~3! shows that, for a given propagation velocity, the
ray parameters p and q unambiguously correspond with an
angle of incidence a.

Now we consider the pressure of a specific plane wave
with p5pi , q5qi at the microphone array, i.e., for h
5ha . According to Eq. ~1! we may write

p~j ,ha ,t !5s~ t2pij2qiha!, ~5a!

or, substituting

t i5qiha , ~5b!

p~j ,ha ,t !5s~ t2pij2t i!, ~5c!

FIG. 1. Impulse responses of one and the same source, measured at eight
microphone positions 0.5-m apart. See also Fig. 3. Note the significant dif-
ferences.

FIG. 2. Coordinate system ~j,h! in the acquisition plane, with the source at
the origin and the microphone array at h5ha .

FIG. 3. Offset versus travel time (j ,t) representation of the soundfield in an
enclosure that is recorded with a closely spaced microphone array (Dj
50.05 m). The impulse responses shown in Fig. 2 are indicated with ar-
rows.
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Plenacoustic Sampling
How densely should sound field be sampled?
Plenacoustic function (PAF) describing spatiotemporal
sound field is approximately spatially bandlimited [27]

Example: Slice of PAF spectrum for 1-D spatial sampling
Plenacoustic sampling theory: Optimal spatiotemporal
sampling schemes and reconstruction bounds [27]

Example: Hexagonal 2-D spatial sampling scheme
Example: Reconstructing sound field up to 1.3 kHz with
100 dB SNR requires microphone spacing = 12.35 cmAJDLER et al.: THE PLENACOUSTIC FUNCTION AND ITS SAMPLING 3799

Fig. 10. A section of the PAF at a particular temporal frequency rad/s .
The curves represent data acquired on intervals of different lengths: 50 cm (full
line), 100 cm (dotted line), and 150 cm (dashed line). A larger interval leads to
a faster decay. For this graph, we used in (8).

Combining the finite aperture effect with the sampling of the
PAF, the following expression for the 2D-FT of the sampled
windowed PAF (denoted as ) is obtained:

(49)

VI. SIMULATIONS AND MEASUREMENTS

In this section, simulation results are presented for the in-
terpolation of RIRs. These results are then compared with real
measurements.

A. Simulation Results

RIRs have been simulated on a line in a room using the image
source model. For simulation purposes, one derives a dense
set of impulse responses, keeps a subset, and interpolates the
missing ones. In the simulations, the case of rectangular sam-
pling of the sound field was considered. To compare the inter-
polated with the simulated RIRs, the normalized mean-square-
error (MSE) criterion was used:

MSE (50)

with the length in samples of the simulated RIRs, the sim-
ulated RIR and the interpolated RIR.

In the presented simulations, RIRs were simulated
every cm along a line in the room. From these simulations, we
kept measurements spaced with 2 cm to interpolate the
“in-between” positions. With the spacing of 2 cm, the RIRs were
reconstructed up to a temporal frequency of 16 000 rad/s. In
this setup, due to the limited length of the array, the decay of the
spectrum is mostly determined by the decay of the windowing
function as discussed in Section V. We chose large enough
in (43) to ensure a sufficient decay in the spectrum of the finite
length aperture PAF. Note that this can be substantially larger
than the one obtained in Fig. 5. The MSE for those positions is

Fig. 11. Interpolation error for different array sizes. We use the same spacing
between the microphones, namely 2 cm.

shown in Fig. 11. Different lengths of the array centered around
the same spatial position were considered, namely 8, 17,
35 and 71. Note that the MSE is only given for the interpolated
positions since the positions used to apply the interpolation are
perfectly reconstructed. One can observe that using the array
corresponding to 71 leads to a very small error (less than

60 dB) for the interpolation in the middle of the array. When
using the same spacing between the microphones but reducing
the number of RIRs, the interpolation error increases due to the
border effects introduced by the finite length of the array. Note
also that the curves on Fig. 11 are not symmetric. This is due to
the fact that the microphone array was not symmetrically located
inside the room.

B. Experimental Results

Experimental results were carried out in a partially sound in-
sulated room with RIRs measured at different spatial positions.
One loudspeaker (Genelec 1029A) was used together with a mi-
crophone array (composed of eight Panasonic WM61A). A fre-
quency logarithmic sweep [26] was used to measure the RIRs.
71 RIRs were measured with a microphone spacing of 2 cm
along a line in the room.6 The spectrum of the measured PAF
is shown in Fig. 12(a). Similarly to the technique presented in
the simulations, we kept 36 measurements spaced with 4 cm to
interpolate the 35 “in-between” positions. The RIRs were low-
pass filtered to 8000 rad/s. Considering (43), was chosen
large enough to ensure a sufficient decay in the spectrum of the
windowed PAF. The MSE on the 35 interpolated RIRs mea-
surements is shown in Fig. 12(b). Note that the MSE shown
in Fig. 12(b) is obtained when using only the first 100 ms of
the RIRs. When considering the full RIRs (1 s) poorer results
are obtained (on the order of 25 dB). This results leads to the
thinking that only the beginning of the RIRs is well interpo-
lated. To justify this conjecture, successive measurements were
performed at the same spatial positions with a 30-s interval. We
studied the MSE between two successive measurements using
a sliding window of 25 ms. The results were averaged over 100

6All the measurements are available online at http://lcavwww.epfl.ch/
~thibaut/Measurements/Acoustic.html
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Fig. 14. Schematic view of the 3-D spectrum of the PAF.

Fig. 15. Sampling of the PAF on a plane. (a) Placement of the microphones
on the plane on a rectangular sampling grid. (b) Plenacoustic spectrum with
its repetitions for a rectangular sampling grid. (c) Hexagonal sampling grid.
(d) Plenacoustic spectrum with its repetitions for a hexagonal sampling grid.

Similarly to the results obtained with the line of microphones,
one sees that the decay of the spectrum is also faster than an ex-
ponential outside of the conical shape. Remark that in the spe-
cific case of the source located on the plane of the microphones,
the decay becomes slower and is, up to a constant, asymptotic
as .

2) Optimal Sampling Pattern: Similarly to the analysis pre-
sented in Section IV-C, the optimal sampling pattern for the po-
sitioning of the microphones on the plane is studied. The first ap-
proach is to use the rectangular sampling as shown in Fig. 15(a).
A spacing of and was used for the spacing between
the microphones in the and directions. Fig. 15(b) shows the
corresponding packing of the circles in the Fourier spectrum for
one temporal frequency (typically the highest frequency present
in the emitted signal).

The conical shape of the spectrum allows us to obtain a tighter
packing of the circles. The use of an hexagonal sampling pattern
leads to a reduction of about 15% in the number of necessary
microphones. Fig. 15(c) shows the new positions of the micro-
phones on the plane. In this case

(54)

Fig. 15(d) shows the corresponding spectrum with its spectral
repetitions. Other packings of the cones can be realized to lower
the temporal sampling frequency of the analog–digital (A/D)
converters but do not reduce further the number of microphones
needed to sample the sound pressure field on a plane [12].

3) Simulation Results: We simulated RIRs on a plane in a
room using the image source model. The 3-D Fourier transform
was applied on the gathered data. By looking at sections of this
spectrum for 1500 rad/s and 3000 rad/s, one obtains
Fig. 16(a) and (b) respectively. One can see that with growing
temporal frequencies, the support of the PAF spectrum also in-
creases as given by (53).

B. Plenacoustic Function in Space

In this section microphones located in the 3-D space are con-
sidered. Similarly to the setup presented in Section VII-A, a
source is located at position and microphones at po-
sitions . The PAF is also given by (51). Note that
in the present setup also is a variable. Call the spatial
frequency of the microphone positions in the direction. Cal-
culating the fourth-dimensional Fourier transform (4D-FT) of
(51) is done in Appendix III. The result is

(55)

which represents a cone in four dimensions. For a particular
temporal frequency, the section of this cone is a sphere. The size
of the sphere obeys the following rule:

(56)

Note that the decay outside of the sphere is not exponential
as it was for the plane and line of microphones. This is due
to the presence of the source at one of the microphone posi-
tions. At a particular temporal frequency, the optimal packing
of the spheres is given by face-centered cubic lattice packing
[28]. It allows to reduce the number of samples by a factor of
about 29.3% when compared to a normal rectangular sampling
pattern.

VIII. CONCLUSION

In this paper, we have introduced and studied the plenacoustic
function. It characterizes the sound pressure field at any point in
space. This function has been studied and its spectrum for the

©T. Ajdler, L. Sbaiz, M. Vetterli, EPFL
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Sparse AIR interpolation
Sparse AIR interpolation in compressed sensing
framework

Temporal sparsity of early reflections [28]

Sparsity of low-frequency room modes in plane-wave
decomposition domain [29]

Spatio-temporal sparsity of equivalent sources [30]

Random sampling with moving microphone [31]
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the RIRs to any location within the volume of interest can be
computed via interpolation, including the locations on the
microphone trajectory. In fact, this interpolation is the key to
our method. Describing the samples recorded along the tra-
jectory based on the knowledge of the excitation signal and
the RIRs on the grid leads to a linear system of equations
that can be solved for the unknown grid RIRs.

A. Uniform sampling and reconstruction

First, consider the uniform time sampling of the PAF.
As usual, T¼ 1/fs denotes the sampling interval in the time
dimension with fs satisfying Eq. (4). This leads to measure-
ments at equidistant sampling points tn¼ nT, where
n 2 f0; 1; 2;…g denotes the discrete time variable of the
causal signal. Beforehand, the temporal bandwidth of the
PAF is limited with an analog low-pass filter blocking all
frequencies above fc. The model parameter fc is determined
by the requested application.

For the uniform sampling in the spatial dimensions, con-
sider a Cartesian grid where the equidistant sampling points
rg 2 G are given by the set

G ¼ frg j rg ¼ r0 þ gxDx; gyDy; gzDz
! "Tg (7)

with the grid origin r0 and the discrete grid variables in
g ¼ ½gx; gy; gz$T 2 Z3. The sampling intervals Dx, Dy, Dz

must follow Eq. (5), in order to avoid spatial aliasing.
As already mentioned above, the aim of our method is

to determine RIRs at equidistant positions by use of dynamic
measurements. For that purpose, a virtual sampling grid in
space that fulfills Eq. (5) is modeled, with integer indices in
g spanning the virtual grid coordinate system. The RIRs on
that grid are denoted as hðrg; tnÞ. In practice, the measuring
area is finite and the spatial sampling grid is limited to size
X' Y'Z. Overall, the recovery of hðrg; tnÞ inside the finite
volume of interest involves N¼XYZ RIRs at grid positions
g 2 G with

G ¼ f0;…;X ( 1g' f0;…; Y ( 1g' f0;…; Z ( 1g:
(8)

The amplitudes of these grid RIRs are assumed to vanish
into the noise level beyond tL(1 for given fs, so each of the
RIRs is limited to length L. Hence, the uniform sampling of
the PAF covers U¼NL values in total. As from now, the
sought grid RIRs are denoted by hðg; nÞ using the discrete
variables.

The ideal reconstruction of the continuous sound field
hðr; tÞ from hðg; nÞ is accomplished by a 4D sinc filter with
infinite support. Due to the exponential energy decay of the
RIRs, finite length interpolation filters achieve reasonable
approximations for the time dimension. However, the finite
number of measurements in the space dimensions still tight-
ens the spatial sampling problem: to improve the spatial
reconstruction despite of finite support, either the measuring
area has to be chosen larger than the volume of interest, or
the spatial sampling grid has to be chosen finer, well below

the Nyquist rate. For both strategies, the number of spatial
measurement points increases.

B. Measurement setup and linear system model

In this section, we interrelate the virtual RIRs, modeled
on a uniform grid in space, with the samples of one moving
microphone to set up a system of linear equations. In gen-
eral, the sampling points are located at intermediate posi-
tions, so the key of our method is spatial interpolation. The
extension to Q microphones is straightforward and allows
for the acquisition of Q times more equations during the
same measuring time.

Let us consider a single moving microphone and let x(n)
denote the measured signal of the microphone which moves
along a tracked trajectory through the entire volume of inter-
est. The speed of the microphone is arbitrary. Let s(n) denote
the signal emitted by the sound source, and let g(n) be the
measurement noise, which is assumed to be statistically
independent of s(n). The choice of the excitation signal is
arbitrary concerning the reconstruction procedure. However,
s(n) should cover the entire spectrum of the bandlimited
PAF which is to be measured, so white noise and perfect
sequences are convenient.

The measurement procedure and a generic virtual sam-
pling grid are outlined in Fig. 1. The position of the dynamic
microphone is given by the time dependent vector rðnÞ
¼ ½rxðnÞ; ryðnÞ; rzðnÞ$T . In theory, any continuous position
could be interpolated by means of a spatial grid with inter-
vals Dx, Dy, Dz fulfilling the Nyquist-Shannon requirement.
However, the proposed method involves the reverse interpo-
lation problem: given the sound field at continuous positions
rðnÞ, the aim is to recover it at regular grid positions rg. So,

FIG. 1. Arrangement of a virtual 2D sampling grid in space with reference
to the grid coordinate system. The spatial sampling intervals Dx, Dy translate
the discrete variables gx, gy to the world coordinate system. The dots repre-
sent the positions of the virtual grid RIRs. This example sketches one
dynamic microphone moving along a Lissajous trajectory in between the
grid positions.

J. Acoust. Soc. Am. 141 (5), May 2017 Katzberg et al. 3223
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Summary and Questions

AIR measurement challenges: reproducibility, loudspeaker
artefacts, noise robustness, identifiability
AIR measurement databases overview
AIR interpolation: wave field analysis, plenacoustic
sampling, sparse interpolation

Questions?
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Blind System Identification (BSI)

1 sound source, 2 or more microphones → find the AIRs
Blind - just use the microphone signals

Conventional BSI methods rely on the multichannel
cross-relation (CR) property

only valid for fully-modelled systems
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Acoustic SIMO System

Blind System 
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Measurement and Estimation of Acoustic Impulse Responses TUTORIAL T4 EUSIPCO 2017 - 76 / 136



Signal Model
In a reverberant environment with a single sound source and
an M -element microphone array at time n and channel i

xi(n) = Hi · s(n) + bi(n) i = 1, 2, ...,M

xi(n): the K × 1 signal vector of the i-th microphone

Hi =


hi,0 hi,1 · · · hi,L−1 0 · · · 0
0 hi,0 · · · hi,L−2 hi,L−1 · · · 0
... . . . . . . ... . . . . . . ...
0 · · · 0 hi,0 hi,1 · · · hi,L−1


constructed from hi = [hi,0 hi,1 . . . hi,L−1]

T

s(n): the K + L− 1× 1 source signal vector
bi(n): the K × 1 noise signal vector
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Cross-filtered signals

2-channel example:

H1(z)

H2(z)

s(n)

x1(n)

x2(n)

Sound 
source

Microphone
signals

Ĥ1(z)

Ĥ2(z)

Cross-filtered
signals

Cross-filtered signals are equal if Ĥ1,2(z) = αH1,2(z) or zero
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Fully-modelled BSI
Cross-relation (CR) property

x1 = s ∗ h1
x1 ∗ h2 = s ∗ h1 ∗ h2

x2 = s ∗ h2
x2 ∗ h1 = s ∗ h2 ∗ h1

hT
i xj = hT

j xi

i, j = 1,2, ...,M, i ̸= j

Let g be an estimate of h, cross-filtered signals x̃ij = gT
i xj

CR error Sum squared error

εij = x̃ij − x̃ji χ(g) =
M−1∑
i=1

M∑
j=i+1

E{[εij]2}

AIRs estimated by g that minimize χ(g) with unit-norm
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Identifiability Conditions

The AIRs can be identified up to an unknown scale factor
(unknown filter in the case of subband processing) provided
that:

C1 - The polynomials formed from hi = [hi,0 hi,1 . . .] are
co-prime so that the channels’ transfer functions Hi(z)
contain no common zeros
C2 - The autocorrelation matrix of the source signal,
Rss = E{s(n)sT (n)}, is full rank

Undermodelling is always a problem in realistic cases

Measurement and Estimation of Acoustic Impulse Responses TUTORIAL T4 EUSIPCO 2017 - 80 / 136



Non-unique Solutions

Cross-relation approach is not robust to additive noise
Iterative solutions use an instantaneous estimate Rn of
the cross-relation matrix R

the gradient descent direction consistently steers the
adaption towards the null space of Rn, which contains h
only in the absence of noise

Recent research on block-based Rayleigh quotient cost
functions with and without normalization has shown
improved noise robustness [32]
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NPM (mis-)Convergence Curves
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Under-modelled BSI

For BSI with h under-modelled by g

x̃ij(n) = x̃ij,e(n) + x̃ij,l(n),

with x̃ij,e and x̃ij,l early and late cross-filtered signals and
again temporarily suppressing n

If gi = αhi,e, then
early part is correctly modelled: x̃ij,e = x̃ji,e

late part acts as unwanted noise: x̃ij,l ̸= x̃ji,l

CR property holds only for the early cross-filtered signals
Under-modelling
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Under-modelling Error Analysis

Under the reverberant signal model1

E{[εij]2} = E{[x̃ij,e − x̃ji,e]
2}+ E{[x̃ij,l − x̃ji,l]

2}
bias term

bias term is dominated by E{[x̃ij,l]2}+ E{[x̃ji,l]2}
⇒ always large

as estimated AIRs approach the true values
E{[x̃ij,e − x̃ji,e]

2} → 0, bias term will dominate
⇒ no convergence!

1xn
i,e and xn

j,l are uncorrelated
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Cross-correlation of Cross-filtered Signals
Consider the cross-correlation between cross-filtered signals:

γij = E{x̃ij · x̃ji}

Under-modelled case

γij = E{[x̃ij,e + x̃ij,l][x̃ji,e + x̃ji,l]}
= E{[x̃ij,ex̃ji,e]}+ E{[x̃ij,lx̃ji,l]}

bias term

bias term is smaller than for CR
cross-correlation of noise-like late reverberation

when estimated AIRs approach the true values,
E{[x̃ij,ex̃ji,e]} increases and bias becomes less dominant
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Comparison Simulation Results - Fully-modelled
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Comparison Simulation Results - Under-modelled
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Summary

Determining the acoustic channels between source and
sensors gives crucial information regarding the
reverberation process
Identifying the acoustic channels (system) blindly is
challenging because the channels are long and
time-varying
Current research on improved procedures continues to
bring benefits
With sufficient accuracy of BSI, dereverberation can be
performed by channel equalization
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Questions/Comments

Questions
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Room Acoustics
Modelling and Simulation
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Outline of the Section

Overview of available classes of room acoustic models and
some recent work in each class
Focus on popular geometric-based models:

Image method
Ray tracing

Focus on perception-based models:
Feedback Delay Networks
Scattering Delay Networks
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Overview

Convolutional (FIR) Ray-tracing
Image Method

Common Acoustical Pole

Orthogonal Basis Function

IIR 

Subband techniques 

Beam-tracing Scattering
Delay Networks

(SDN)

Bounday Element Method

Feedback 
Delay Networks

(FDN)

Digital 
waveguide 
Networks

(DWN)

Finite Volume Method

Schroeder reverb
Commercial reverb

Digital Waveguide Mesh

Finite-di�erence Time-Domain

Physical-based

Delay networks

M
ea

su
rement-based

Geometrical acoustics

Wave-based

Excellent overview of past 50 years and more of artificial
reverberation by Välimäki et al. [33, 34]
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Convolutional (FIR) Ray-tracing
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Subband techniques 

Beam-tracing Scattering
Delay Networks

(SDN)

Bounday Element Method

Feedback 
Delay Networks
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Digital 
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Networks
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Finite Volume Method

Schroeder reverb
Commercial reverb

Digital Waveguide Mesh

Finite-di�erence Time-Domain

Physical-based

Delay networks

M
ea

su
rement-based

Geometrical acoustics

Wave-based

Wave-based models
Discretise wave equation in time/frequency and
space/boundary/volume

E.g. FDTD [35] approx. derivatives with finite differences:
∂2p

∂t2
≈

pn+1
l,m,i

− 2pnl,m,i + pn−1
l,m,i

T2

∂2p

∂x2
≈

pnl−1,m,i − 2pnl,m,i + pnl+1,m,i

X2

Convert wave equation into set of linear equations
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Overview

Convolutional (FIR) Ray-tracing
Image Method
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M
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su
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Geometrical acoustics

Wave-based

Wave-based models
Discretise wave equation in time/frequency and
space/boundary/volume

Recent work aimed at characterising boundary condition
[36, 37, 38], source excitation [39], GPU parallelisation [40, 41]
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Overview
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Wave-based

Wave-based models
Discretise wave equation in time/frequency and
space/boundary/volume

High physical accuracy...
...but extremely high computational complexity
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Overview

Convolutional (FIR) Ray-tracing
Image Method
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Finite-di�erence Time-Domain

Physical-based

Delay networks

M
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Geometrical acoustics

Wave-based

Geometrical acoustics models
Models approximating sound propagation using rays

Lower computational complexity...
...but lower accuracy
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Overview

Convolutional (FIR) Ray-tracing
Image Method

Common Acoustical Pole

Orthogonal Basis Function

IIR 

Subband techniques 

Beam-tracing Scattering
Delay Networks
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Bounday Element Method
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Digital 
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Finite Volume Method
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Commercial reverb

Digital Waveguide Mesh

Finite-di�erence Time-Domain

Physical-based

Delay networks

M
ea

su
rement-based

Geometrical acoustics

Wave-based

Delay Networks
Methods that do not physically model sound propagation in
rooms, but aim to create pleasing reverberant sound

Very low computational complexity (historically first type
of artificial reverberators)...
..but no physical accuracy and no explicit modelling
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Overview

Convolutional (FIR) Ray-tracing
Image Method

Common Acoustical Pole

Orthogonal Basis Function

IIR 

Subband techniques 

Beam-tracing Scattering
Delay Networks
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Bounday Element Method

Feedback 
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Digital 
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Finite Volume Method
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Commercial reverb

Digital Waveguide Mesh

Finite-di�erence Time-Domain

Physical-based

Delay networks

M
ea

su
rement-based

Geometrical acoustics

Wave-based

Measurement-based methods
Form parametric representation of room acoustics from real
measurements

E.g. finite impulse response model:
Simplest model
Very large number of parameters (if Fs = 40 kHz,
T60 = 2 s, then 80, 000 parameters)
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Overview

Convolutional (FIR) Ray-tracing
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Digital Waveguide Mesh

Finite-di�erence Time-Domain
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Delay networks
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Geometrical acoustics

Wave-based

Measurement-based methods
Form parametric representation of room acoustics from real
measurements

More compact parametric representation possible with
other models, e.g. pole-zero models [42], common
acoustical poles [43], orthogonal basis function models [44]
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Image method (IM) for single reflector

Source

Wall

Microphone

Source

Image
source

Wall

Microphone

Wave propagation in half space is equivalent for:
1. source and wall
2. source and image source (no wall)

Exact for rigid wall (∇p · n = 0)
Approximation for non-rigid wall
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Image method (IM) for multiple surfaces

Source

Image
source

Wall

Microphone

Question: what about multiple walls?
Remove wall, mirror source and opposite wall
Repeat until no wall in the region of interest
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Image method (IM) for rectangular room

Rigid wall: exact solution of wave equation [45]

Non-rigid wall: geometric approximation
Due to regularity of lattice: simple software
implementation

function h=rim(mi, so, ro, be, Np, Nr, Tw, Fc)
% mi (microphone), so (source) and ro (room) are
% three−dimensional column vectors.
% Np: num of samples of the RIR.
% Nr: num of random samples (Nr=0 for original IM).
% Tw: samples of low−pass filter, Fc: cut−off freq.
% All quantities above are in sample periods.
% be: matrix of refl. coeff. [x1,y1,z1;x2,y2,z2]
% Example 1: Fig.2a, h=rim([2;1.5;1]/343*4E4,...
% [1;2;2]/343*4E4, [4;4;4]/343*4E4,...
% 0.93.*ones(2,3), 4E4, 0, 40, 0.9);
% Example 2: Fig.11, h=rim([2;1.5;1]/343*4E4,...
% [1;2;2]/343*4E4, [4;4;4]/343*4E4,...
% 0.93.*ones(2,3), 4E4,0.08/343*4E4, 40, 0.9);
 
h=zeros(Np,1); ps=perm([0,1],[0,1],[0,1]);
Rps=repmat(so,[1,8])+(2.*ps-1).*repmat(mi,[1,8]);
or=floor(Np./(ro.*2))+1;
rs=perm(-or(1):or(1),-or(2):or(2),-or(3):or(3));
for i=1:size(rs'); r=rs(:, i);
 for j=1:8; p=ps(:,j); Rp=Rps(:,j);
  d=norm(2*ro.*r+Rp)+1+Nr*(2*rand-1);
  if round(d)>Np || round(d)<1; continue; end;
  am=be(1,:)'.^abs(r+p).*be(2,:)'.^abs(r);
  if Tw==0; n=round(d); else
    n=(max(ceil(d-Tw/2),1):min(floor(d+Tw/2),Np))';
  end;
  s=(1+cos(2*pi*(n-d)/Tw)).*sinc(Fc*(n-d))/2;
  s(isnan(s))=1; h(n)=h(n)+s*prod(am)/(4*pi*(d-1));
end; end;
function res=perm(varargin);
[res{1:nargin}]=ndgrid(varargin{1:nargin});
res=reshape(cat(nargin+1,res{:}),[],nargin)';
 

Spatial periodicity of image sources can be exploited for
fast rendering in multiple positions [46]
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Ray tracing [47]

Source emits rays in all directions
Specular reflections
Diffraction and scattering also possible
Build AIR by recording time and amplitude at receiver
Choice of receiver size and number of rays is critical

Source

Receiving
volume
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Comparison Ray tracing and Image Method

Ray tracing
Complexity can be controlled by number of rays
Can model edge diffraction, scattering
No guarantee of low-order reflections

Image Method
Elegance, solution of wave equation for rigid walls
Guaranteed all reflections up to certain order present
Good rendering of low frequency modes [48]

High computational complexity for long AIRs
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Sweeping echoes in perfectly rectangular rooms

Perfectly rectangular rooms cause sweeping echoes
Due to orderly alignment of images along 3 axes [48]

Regular simulation setups yield stronger sweeping echoes
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Sweeping echoes in real rooms

Sweeping echoes can actually be perceived in very
regular, empty rooms (e.g. squash court) [49]

But why not in typical rooms?

Room imperfections, objects
Simulated room with out-of-square imperfections
Regularity of lattice already broken with 1% imperfections
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Perception-based models
Overview paper by Hacıhabiboğlu et al. [50]

Often separate modules for early and late reverb
Early reflections using IM and should be spatialised
correctly Reverb = Early Reflections + Late Reverb

y(n)

Reverb
x(n) Late

... ...
Tapped Delay Line

• TDL taps may include lowpass filters
(air absorption, lossy reflections)

• Several taps may be fed to late reverb unit,
especially if it takes a while to reach full density

• Some or all early reflections can usually be worked
into the delay lines of the late-reverberation
simulation (transposed tapped delay line)

15

Early Reflections

The “early reflections” portion of the impulse response is
defined as everything up to the point at which a statistical
description of the late reverb becomes appropriate

• Often taken to be the first 100ms

• Better to test for Gaussianness

– Histogram test for sample amplitudes in 10ms
windows

– Exponential fit (t60 match) to EDC (Prony’s
method, matrix pencil method)

– Crest factor test (peak/rms)

• Typically implemented using tapped delay lines (TDL)
(suggested by Schroeder in 1970 and implemented by
Moorer in 1979)

• Early reflections should be spatialized (Kendall)

• Early reflections influence spatial impression

16

(J. O. Smith, https://ccrma.stanford.edu/~jos)

Desired qualities for late reverb:

Smooth decay: high echo density
Smooth frequency response: high mode density
Moorer’s ideal reverb: exponentially decaying white noise
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Feedback delay network

(Schlecht and Habets, 2017)[51]

Generalization of Schroeder reverberator
(Stautner and Puckette, 1982) [52]

Design: start with lossless prototype (T60 = ∞) to
obtain noise-like reverb and add losses to obtain desired
reverberation time in each band
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Advancements in FDNs

Jot and Chaigne (1991) [53]:
Practical procedure to design delays and FDN matrix to
obtain desired echo density and frequency-dependent
reverberation time

Rocchesso and Smith (2002) [54]:
Equivalence with DWN
Circulant feedback matrix with increased efficiency

Schlecht and Habets (2015, 2017) [51, 55, 56]:
Time-varying FDNs: reduce artifacts and obtain more
lively reverberation tail
Unilosslessness: new definition of lossless FDN matrix
Closed-form and approximated formulas for echo density
Procedure to design delays for desired mixing time
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Digital waveguide networks (DWN)
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Network of bi-directional delay lines connected at
scattering junctions (Smith, 1985) [57]

Can be interpreted as network of acoustic tubes
Question: How to set parameters (delay line lengths,
network connections, scattering matrix..)?
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Scattering delay network (SDN)

Design DWN based on characteristics of a physical room

Position nodes at first-order
reflection points
Fully connected DWN network
Mono-directional lines for
source-junction and junction-mic
(De Sena et al., 2015) [58]

Two interpretations:

Physical network of acoustic tubes
Approximation of image method
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SDN: approximation of image method

Correct rendering of LOS and first-order reflections in
time, amplitude and direction
Approximation of second and higher-order reflections, less
important perceptually

I-order reflection II-order reflection Another II-order reflection
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SDN performance

Significantly faster than convolution alone
All parameters of model derived from physical properties
Perceptually more important information given precedence

Advantages w.r.t. delay networks:

No need for hands-on parameters tuning
Physical interpretation ⇒ spatialisation possible
More elegant solution than separate early/late modules
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Recent advancements in SDN

Stevens et al. (2017) [59]:
Extension to exact second-order reflections
Implementation of direction-dependent scattering (e.g.
modelling of trees)
Modelling of outdoor scenes (sky absorbing nodes)

Schlecht and Habets (2017) [51]:
Showed scattering matrix is unilossless

(Stevens et al., 2017) [51]
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Summary

Wide variety of room acoustic models and simulators
Wave-based models: most accurate available but
computationally expensive
Geometric-models: ray-like assumption, lower complexity
but also lower accuracy
Perception-based models: very fast, attempt to
reconstruct only perceptually relevant features of
reverberation
Measurement-based models: parametric representation of
room acoustics based on measured AIRs
Significant advancements have been made in all classes
Interesting research direction is to find connections
between classes (e.g. SDN) and to combine advantages
of different classes
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Questions/Comments

Questions
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Dereverberation
Processing Methods
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Overview of dereverberation methods

Traditionally, dereverberation processing methods are classified
into two categories [60]:

Reverberation Cancellation Methods
Modelling reverberation as convolutive interference
Recovering speech source signal by (multi-channel)
deconvolution
Relying on AIR or speech source model

Reverberation Suppression Methods
Modelling reverberation as additive interference
Recovering speech source signal by spectral/spatial
enhancement
Relying on spectral/spatial reverberation measure

Recently, some hybrid methods have been proposed as well.
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Reverberation cancellation

In reverberation cancellation, reverberation is modelled as
convolutive interference

Reverberation Cancellation 
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Main methods
Blind system identification and inversion
Multi-channel linear prediction
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Blind system identification and inversion

Two-step procedure

Step 1: Blind system identification (BSI, see Section 4)
Step 2: Multi-channel inverse filter design

Blind system identification and inversion 
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Multi-channel inverse filter design

Least-squares FIR inverse filter design problem:

min
w

∥d − Ĥw∥2

Target response[61] d = [

equalization delay︷ ︸︸ ︷
0 . . . 0 1 0 . . . 0]T

SIMO convolution matrix Ĥ =
[
Ĥ0 . . . ĤM−1

]
Multiple-input/output Inverse Theorem (MINT)[62]:
Minimum-norm solution w = ĤT (ĤĤT )−1d exists if
both

Estimated AIRs ĥi do not share common zeros
FIR inverse filter length Lw = ⌈ L−1

M−1⌉

In case of perfect BSI (Ĥ ≡ H), perfect dereverberation
is achieved
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Multi-channel inverse filter design
Challenges related to MINT-based inverse filter design:

Online BSI required in dynamic scenarios
Inversion highly sensitive to estimation errors
Accurate channel order estimate required

Recent advances in multi-channel inverse filter design:
Channel shortening/reshaping: maximize early
reflections energy while minimizing late reverberation
(Rayleigh quotient criterion) [63, 64]

Partial MINT: maintain early reflections in target d [65]

Relaxed multi-channel LS: remove equations for early
reflections (weighted LS criterion) [66]

Regularization: (generalized) Tikhonov regularization
in LS [67, 68] or Rayleigh quotient criterion [69]

Sparse regularization: promote spectral [68] or
time-frequency sparsity [70] of equalized speech signal
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Multi-channel linear prediction

Multi-channel linear prediction (MCLP)

Prediction of clean speech signal from multiple
microphone signals
No AIR estimates required
Operates in time or time-frequency domain

Multi-channel linear prediction 
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Multi-channel linear prediction

MCLP signal model: x0(n) =
M−1∑
i=1

Lw∑
l=d

wi,lxi(n− l)︸ ︷︷ ︸
reverberation

+ e(n)︸︷︷︸
enhanced

signal

For white source signals, MCLP achieves perfect
dereverberation under MINT conditions
For speech source signals, “excessive whitening” of
source is alleviated by

Increasing prediction delay d [71]

Prewhitening microphone signals with inverse source
signal model [72]

Probabilistic modeling of speech source signal [73, 74]

Adaptive MCLP algorithms based on RLS [75, 76, 77]

and Kalman filters [78, 79, 80] have recently been proposed
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Multi-channel linear prediction
Simulation example: MCLP with sparse time-frequency prior
for speech source signal (Jukić et al., 2015 [74])

©Ante Jukić, University of Oldenburg

Clean speech

Reverberant speech
(T60 = 750 ms)

Enhanced speech
(M = 4)
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Reverberation suppression
In reverberation suppression, reverberation is modelled as
additive interference

Reverberation Suppression 
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Main methods
Single- & multi-channel spectral enhancement
Data-independent & data-dependent beamforming
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Spectral enhancement
Spectral signal model (short-time power spectral density):

ϕx(p, k) = ϕxd
(p, k) + ϕxr(p, k)

Spectral enhancement

Step 1: Estimate microphone signal, direct-path signal,
and/or reverberant signal PSDs
Step 2: Apply spectral gain function g(p, k), e.g.

g(p, k) =
ϕ̂xd

(p, k)

ϕ̂x(p, k)
, g(p, k) = 1− ϕ̂xr(p, k)

ϕ̂x(p, k)

Key assumption: direct-path and reverberant signals
statistically uncorrelated
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Single-channel spectral enhancement
Single-channel PSD estimation

Use statistical AIR model (e.g. Polack’s model) to
estimate (late) reverberant signal PSD [81]

Statistical AIR model requires prior information on room
acoustics, e.g. by means of reverberation measures
(C50, T60, etc., see Section 3)

Single-channel spectral enhancement 
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Multi-channel spectral enhancement
Multi-channel PSD estimation: Spatial blocking approach

Estimate reverberant signal from microphone signals by
spatially blocking direct-path signal [82]

Blocking matrix design relies on estimate of source signal
direction of arrival (DOA)
Multi-channel spectral enhancement 1 
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Multi-channel spectral enhancement
Multi-channel PSD estimation: Spatial coherence approach

Key assumption: direct-path signal is coherent,
reverberant signal is diffuse
Estimate spatial coherence from microphone signals to
derive signal-to-diffuse ratio (SDR, equivalent to DRR)
and design SDR-based spectral gain function [83, 84]

SDR estimation relies on estimate of source signal DOA
or use of directional microphones

Multi-channel spectral enhancement 2 
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Data-independent beamforming

Superdirective beamforming

Key assumption: direct-path signal is coherent,
reverberant signal is diffuse
Beamformer that minimizes diffuse interference (i.e.
maximizes directivity) is superdirective beamformer [85]

Superdirective beamformer design requires source
signal DOA estimate and diffuse reverberation covariance
matrix
Performance depends strongly on number of microphones,
array geometry, source signal DOA, and frequency
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Data-dependent beamforming
Generalized Sidelobe Canceller (GSC)

Adaptive implementation of MVDR beamformer
No diffuseness assumption on reverberant signal
Fixed beamformer (FB) and blocking matrix (BM) design
relies on source signal DOA estimate
Superdirective FB design: data-dependent beamforming
always outperforms data-independent beamforming

Generalized sidelobe canceller 
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Data-dependent beamforming
Wiener solution for GSC is biased due to source signal
coloration [86]

Impact of bias on enhanced signal very similar to
“excessive whitening” in MCLP
Prewhitening proposed for MCLP [72] can also be used
in GSC [86]

GSC with prewhitening 

adaptive 
GSC 

e =

2

6664

e(0)
e(1)
...

e(N � 1)

3

7775

prewhitening 
filter 

fixed GSC x =

2

6664

x0

x1
...

xM�1

3

7775
copy 
filters 
ŵ 

©Toon van Waterschoot, KU Leuven

Note: Multi-channel Wiener Filter has recently also been
employed for dereverberation processing [87]
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Hybrid methods
While based on different signal models, structural
equivalence exists between MCLP and GSC
Both methods suffer from bias and excessive whitening
due to source signal coloration
With ideal blocking matrix design (relying on AIR early
reflections estimate), GSC performs equivalent to
MCLP, providing perfect dereverberation for white
source signals under MINT conditions [88]

GSC additionally provides coherent noise cancellation [88]

MCLP vs. GSC comparison 
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Hybrid methods
Similar equivalence can be observed between MINT-based
inverse filter design (requiring BSI) and filter-and-sum
beamformer (FSB) design (requiring source signal DOA
estimate)
MINTFormer [89]: hybrid and tunable method
trading off MINT-based dereverberation performance with
FSB robustness by weighting MINT and FSB criteria

min
w

γJFSB(w) + (1− γ)JMINT(w)

MINT vs. FSB 

inverse   
filters w 

BSI 
MINT 

FSB w 

DOA 
estimation FSB 
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Hybrid methods
Simulation example [89]: Output DRR vs. MINTFormer
tuning parameter for varying AIR estimation quality (measured
by AIR normalized projection misalignment (NPM))

min
w

γJFSB(w) + (1− γ)JMINT(w)

©Patrick Naylor, Imperial College London
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Conclusion
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Conclusion
Quantifying level of reverberation is highly useful.
Several “blind” methods are available with good accuracy
in some cases. Recent research includes also prediction of
human perceived level of reverberation.
AIR measurement follows well-established procedure
and various open-source databases are available.
Substantial progress in AIR estimation (blind and
non-blind) has been made while some challenges still
remain particularly for real acoustic scenarios.
Regularization turns out to be crucial when addressing
AIR estimation and deconvolution problems.
Broad variety of room acoustic models have been
proposed in past 50+ years, that can be classified into
physical-based models, delay networks, and
measurement-based models.
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Conclusion
For reverberation synthesis applications, models can
broadly be ordered on scale from high accuracy and
complexity (physical models) to low accuracy and
complexity (delay networks).
Significant advancements have been made in different
model classes but more work remains to be done to find
links between models and to combine advantages of
different classes.
Recent work in dereverberation processing has brought
increased robustness and provides outlook towards
adaptivity and scalability.
Solving dereverberation problem using system
identification can be considered as partially solving
acoustic scene analysis problem.
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