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Set the topic in its scientific context
Provide an overview of the topic and classification of its
subtopics

Outline the key technical approaches and give references
to relevant algorithms

e jt's not a class

Give insights and perspectives

Introduction
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Earliest known mention of reverberation, “The Republic”,
written by Plato around 380 BC:

“And what if sound echoed off the prison wall opposite them?
When any of the passers-by spoke, don’t you think they'd be
bound to assume that the sound came from a passing shadow?”
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Pioneering scientific work:
e Rayleigh, “ The theory of sound,” 1877
e Sabine, " Collected papers on acoustics,” 1922
e Bolt, “Theory of speech masking by reverberation,” 1949

e Schroeder, “Natural sounding artificial reverberation,”
1961

e Haas, “The influence of a single echo on the audibility of
speech,” 1972

e Allen, “Image method for efficiently simulating
small-room acoustics,” 1979
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More Recent Influences

Hand-held — Hands-free (1990's)

i

© 2017 Imperial College London
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More Recent Influences

Hand-held — Hands-free (2000's)

© 2017 Imperial College London
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More Recent Influences

Hand-held — Hands-free (2010's)

© 2017 Imperial College London
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Other Influences

e Speech-in-noise
intelligibility is
significantly degraded by
reverberation

e Many children are
schooled in a second
language

Introduction TUTORIAL T4 EUSIPCO 2017 - 14 /136



Immersive Audio
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Recent Major Research Initiatives

Overview of geometrical room acoustic modeling techniques

Lauri Savioja®
Department of Computer Science, Aalto University, Otaniementie 17, P.0. Box 15500, FI-00076 Aalto,
Finland

U. Peter Svensson
Acoustics Research Centre, Department of Electronics and Telecommunications, Norwegian University of
Science and Technology, O.S. Bragstads plass 2B, NO-7491 Trondheim, Norway

.“s'
-

fE sPatrick A. Naylor
Nikolay D. Gautiitch J. Acoust. Soc. Am. 138 (2), August 2015

CHALLENGE [

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 5, JULY 2012

Dereverberation and H
. . . . Reverberation of
Fifty Years of Artificial Reverberation Audio, Music, and Speech %2
Vesa Vilimiki, Senior Member, IEEE, Julian D. Parker, Lauri Savioja, Senior Member, IEEE,
Julius O. Smith, Member, IEEE, and Jonathan S. Abel, Member, IEEE

TUTORIAL T4 EUSIPCO 2017 - 16 /136




Tutorial Outline

1. Introduction
2. Fundamentals of Room Acoustics

3. Measures of Reverberation

4. Measurement and Estimation of Acoustic Impulse
Responses

5. Room Acoustics Modelling and Simulation

6. Dereverberation Processing Methods
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Summary and Questions/Comments

e Context and motivation for reverberation and
dereverberation

e Emphasize the importance for telecommunications but
also other sectors and influences

e Any questions so far?
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Fundamentals of
Room Acoustics
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Outline of the Section

e Start with components of acoustic impulse response
(AIR), some definitions, and examples of measured AIR

e Fundamentals on physical modelling of sound, wave
equation and modal description of reverberation

e Elements of perception of room acoustics
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Acoustic Impulse Response (AIR)

Direct Sound

Amplitude

"*... Early Reflections

Time L

Copyright © 2015 Rational Acoustics

Components of AIR A(t) in rooms:

e Direct line-of-sight (LOS)
e Early reflections: relatively sparse first echoes

Late reverberation: so densely populated with echoes that
it is best to characterise the response statistically.

Fundamentals of Room Acoustics
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Some definitions

e Transition point between early reflections and late
reverberation

Reverberation time (T60):

e Time taken for sound to decay 60 dB from its initial level
(more detailed definition in next section)
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Measured AIR samples
L I

e St Patrick’'s Church in
Patrington (recording by
Foteinou and Murphy)
Tso = 1.86 s

e Bathroom (recording by van
Saane) Tgo = 0.35 s

e Inchindown oil storage
(recording by Cox) Tgo = 75 s
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e Sound propagation governed by the PDE [1:

10%p
— === =35
c ot?
where ¢ = 343 [m/s], p pressure, s source distribution
e Need initial and boundary conditions to find solution
e Example of boundary condition:
Ip

5 = —cZ,Vp-n

where n normal at boundary, Z,, wall impedance

e Equation admits closed form solution only in few cases
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Modal description of reverberation

e Using monochromatic sound source, Helmholtz equation
(1.

. w\2, .
2+ (7) =3

e Using separation of variables, and point source:

Z e
w2 — w2 — 2]§mwm

where V' volume, x observation point, x’ source position,
Ym(x) eigenfunctions of problem, w,, and d,, real and
imaginary part of problem’s eigenvalues, respectively

ST
H

e Equivalent to a parallel of second-order resonant modes
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Modal description of reverberation (cont'd)

e Density of modes increases as f? [Kuttruff, 2000] [
e Similarly to early/late in impulse response, frequency
response of a reverberant room can be divided in:

e Low-frequency sparse distribution of resonant modes
* Modes packed so densely that they merge to form
random frequency response

|
400 500
Frequency [Hz]
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Schroeder frequency

e Transition point between two regions called Schroeder

frequency [Schroeder, 1962] 12: F, = 2000,/ %5

e Bathroom V = 10m3, Ty = 0.35 s = F. = 374 Hz
e Concert hall V =2700m3, Tgo =2 s = F, =54 Hz
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Perception of Sound in Rooms

Copyright © 2015 Rational Acoustics

e Governed by complex and not fully understood perceptual
phenomena 3 4

1. Early reflections: affect spaciousness, envelopment, and
apparent source width.

2. Late reverberation: precise structure not important, but
2.1 Tyo(w): affects impression of size
2.2 Echo density: affects perceived texture of reverberation
2.3 Mode density: if insufficient can yield metallic sound
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e AIR in a room: LOS, early reflection and late reverb
e Wave equation gives physical model for propagation

e Wave equation requires initial and boundary conditions to
find solution, and solution hard to find in closed form

e Solution for point-like sound source yields modal
description of reverberation

e Modes well separated at low frequencies
e Room perception governed by complex phenomena
e Accurate rendering of early reflections is important

e We are not sensitive to precise structure of late reverb
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Questions/Comments

e Questions

Fundamentals of Room Acoustics TUTORIAL T4 EUSIPCO 2017 -



Measures of Reverberation
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Why are Reverberation Measures Important?

e Significant aspect of speech quality
e not specifically included in general measures

e Significant aspect of audio/music quality
e usually aesthetically judged

Parts of this tutorial will emphasize speech applications
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Why are Reverberation Measures Important?

e Significant aspect of speech quality

e not specifically included in general measures
e Significant aspect of audio/music quality

e usually aesthetically judged

e Adaptively control dereverberation processing
e switch off if not needed

Parts of this tutorial will emphasize speech applications

Measures of Reverberation TUTORIAL T4 EUSIPCO 2017 - 32/136



Why are Reverberation Measures Important?

e Significant aspect of speech quality

e not specifically included in general measures
e Significant aspect of audio/music quality

e usually aesthetically judged

e Adaptively control dereverberation processing
e switch off if not needed

e ‘Awareness’ of room acoustics
e exploited in other processing

Parts of this tutorial will emphasize speech applications
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Why are Reverberation Measures Important?

e Significant aspect of speech quality

e not specifically included in general measures
e Significant aspect of audio/music quality

e usually aesthetically judged

e Adaptively control dereverberation processing
e switch off if not needed

e ‘Awareness’ of room acoustics

e exploited in other processing

e Modelling for Automatic Speech Recognition (ASR)

* multi-condition training
e control distribution of reverberation in the training set

Parts of this tutorial will emphasize speech applications
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Acoustic Impulse Response

Direct path
0.8} / b

06k Early reflections 1

04} Late reflections

e |

Normalized amplitude

0 0.05 0.1 0.15
Time (s)
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Classes of Measures of Reverberation

e Room acoustics based
e T60 - reverberation time

e Model based
° DRR - direct to reverberation ratio
* (50 - clarity index
e Perceptually based
* PLR - Perceived Level of Reverberation (opinion-based)
* Qm - (instrumental)
e .. others
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Physical Acoustical Characteristics

e Early reflections

* echoes — ratios

o Late reflections — spectral variation (RTS)
° reverberation

Direct path

Early reflections

o 0.6
3
3 04 / /La(e reflections

0.2

[ 0.05 0.1 0.15
Time (s)
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Energy Decay Curve

I . I . . . .
0 005 0.1 015 02 025 03 035 04 045 05
Time (s)

Impulse Response
o
-

of T T T T T T T T T T

Energy Decay Curve (dB)

0 005 01 015 02 025 03 035 04 045 05
Time (s)

If the AIR of the room, h(t), is known, the energy decay curve
(EDC) can be obtained from the Schroeder integral [!]

o0
EDC(t):/ h?(T)dr
t



Taxonomy

measurement method | instrumental vs. opinion-based

prior information intrusive vs. non-intrusive
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Reverberation Time

The reverberation time, Tg, is defined for a diffuse sound field
as the time in seconds required for the EDC to decay by 60 dB

Sabine’s formula Bl

%
T60 X — S
aSabineA

e 1/ is the enclosed volume

® QgupineA is the total sound absorption in the room with
surface area A
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Examples

A > 5 s Loss of speech intelligibility is substantial

1.5 to 3.5 s Auditoria - reverb is good for music,
significant loss of speech intelligibility
- New York, Carnegie Hall: 1.7 s

500 ms Classroom - reverb is distracting,
loss of intelligibility when also noisy,
damages ASR performance

Reverberation Time

300 ms Office - reverb is not distracting,
no loss of intelligibility but damages ASR

20 ms Soundproof booth, dry sound

(Qualitative comments refer to typical listening distances.)
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Examples

> 5 s Loss of speech intelligibility is substantial

1.5 to 3.5 s Auditoria - reverb is good for music,
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20 ms Soundproof booth, dry sound

(Qualitative comments refer to typical listening distances.)

Measures of Reverberation TUTORIAL T4 EUSIPCO 2017 - 39/136



Examples

> 5 s Loss of speech intelligibility is substantial

1.5 to 3.5 s Auditoria - reverb is good for music,
significant loss of speech intelligibility
- New York, Carnegie Hall: 1.7 s

n Time

gssroom - reverb is distracting,
ik a-also noisy,

Reverberation time

varies across a range of frequencies ) )
t distracting,

amages ASR

7

Reverberation time

does not vary with position in the room
tances.)
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Critical Distance

Distance D, from the source at which the sound energy
density due to the direct-path component, Fy, equals the
sound energy density due to the reverberant component, E, !

Qv

7TT60

D, ~0.11

with source directivity factor () and room volume V'

TUTORIAL T4 EUSIPCO 2017
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Direct to Reverberation Ratio

nnnnnnnnn

nnnnnnnnnnnnnnn

Direct to Reverberation Ratio (DRR) is given by //“ """"""""""

nd
> h*(n)
DRR = 10log,, [ —=2— | dB,

o0

>, h*(n)

n=nq+1

e samples of the AIR, h,,, indexed n =0, ..., nq represent
direct-path propagation

e samples of the AIR indexed n > nq represent late
reverberation
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Clarity Index

Clarity Index is given by

> h¥(n)
C=10log,, | =2— | dB

o0

>, h*(n)

n=ne+1

e where n,fs can be chosen as 50 ms
* denoted by C'5g

e motivated by the human auditory system

* interprets multipath signal components as a single signal
if the components’ times of arrival differ by less than
around 50 ms
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Speech-to-Reverberation Modulation Energy Ratio

Falk et al, 2010: “A Non-Intrusive Quality and Intelligibility
Measure of Reverberant and Dereverberated Speech” [9]
e SRMR operates in the modulation domain

e spectrum of temporal envelopes in gammatone bands

q =
SRMR = 2zk=1 5%
* &
- k=5%k
where & is the average modulation energy in band k&
e Approach

* anechoic speech contains modulation frequencies ranging
2-20 Hz

* reverberation causes smearing of modulation energy into
higher modulation frequencies
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Examples
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e Building entrance with ambient noise

e Source distance 2.5 m

o T 0.85s

e Reverberant signal to noise ratio -10 dB to 30 dB
e Source data CHIME 3 (WSJ)

e Kaldi ASR
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Effects on Automatic Speech Recognition

Word Error Rate Results (%) vs RSNR

reverb  DSB DSB+SS

RN 99.98§99.79 99.35 99.91 99.61 100.0 99.89 99.57 99.96 99.61

[( 99.18§97.12 94.47 98.09 95.72 99.36 95.95 92.49 96.88 93.95

Sl 95.16§86.46 79.47 91.48 83.30 87.00 76.24 68.04 79.69 71.70

p{l 92.56§79.19 70.56 86.64 77.08 66.73 56.79 51.54 61.27 55.33

E[Ul 92.25878.05 69.14 86.55 76.93 58.77 51.20 48.44 55.09 51.04

RSNR - reverberant signal-to-noise ratio
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Effects on speech intelligibility

STOI Results vs RSNR

0.74 0.76

081 08 08 081 083 085 08 084 0.8

0.83 084 081 082 08 087 087 086 0.86

Combination of noise and reverberation is strongly
problematic
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Perceived Level of Reverberation

How does reverberation affect the human perceptual system?
e Perceived Level of Reverberation (PLR) measure

® adaptively control hearing aid signal processing

o R is the Room Spectral Variance - a measure of colouration due to convolution with the RIR
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Perceived Level of Reverberation

How does reverberation affect the human perceptual system?
e Perceived Level of Reverberation (PLR) measure
® adaptively control hearing aid signal processing

Previous instrumental estimators of PLR (intrusive):

e Allen [ P o —Tg 0%
e de Lima @ Q=— Too 0
(DRR)”
o 2\3
e Vallado U O = _ Teo)* (9R)”

(DRR)

o R is the Room Spectral Variance - a measure of colouration due to convolution with the RIR
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Non-intrusive PLR estimation

Eaton et al, 2017, “Estimation of the perceived level of
reverberation using non-intrusive single-channel variance of decay
rates”[10]

e Feature: Negative Side Variance of decay rates
* NSV

e Data: Use an existing intrusive measure (),
* As much data for training as desired!

Data-driven approaches like this are effective given sufficient
labelled training data

Measures of Reverberation TUTORIAL T4 EUSIPCO 2017 - 49/136



e (),, measure has been extensively validated

e (), is therefore used to label reverberant speech to be
used for training the proposed algorithm
* @y is intrusive = OK for training
* (@ is instrumental = plenty of examples to learn from
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Energy decay rate

e At each freq in STFT domain, the amplitude envelope of
each sound/phoneme has a decay phase
e anechoic: decays are intrinsic decay envelopes of speech
* reverb: decay rates are slower and extended in time
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Energy decay rate

e At each freq in STFT domain, the amplitude envelope of
each sound/phoneme has a decay phase
e anechoic: decays are intrinsic decay envelopes of speech
* reverb: decay rates are slower and extended in time

e Energy decay rate A, of AIR can be found by linear
regression™] in each frequency bin over short windows
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Energy decay rate

e At each freq in STFT domain, the amplitude envelope of
each sound/phoneme has a decay phase

e anechoic: decays are intrinsic decay envelopes of speech
* reverb: decay rates are slower and extended in time

e Energy decay rate A, of AIR can be found by linear
regression™] in each frequency bin over short windows

e In reverberation, decay rate results from decays from
anechoic speech, x, convolved with the AIR h

)\I*h (t> f)
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Negative Side Variance of Decay Rates

Hypothesis:
“The variance in decay rates in both the diffuse and near fields
is related to PLR"

e somewhat similar to a measure of modulation
e we only consider negative gradients for ‘decays’

e written as 02(Agsn_)

PLR XX Qm = gw(0'2<)\x*h,))
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Negative Side Variance of Decay Rates

Hypothesis:
“The variance in decay rates in both the diffuse and near fields
is related to PLR"

e somewhat similar to a measure of modulation
e we only consider negative gradients for ‘decays’

e written as 02(Agsn_)

PLR Qm = gW(O-2<)\:p*h7>>
Mapping Function

Learn from training data
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Negative Side Variance of Decay Rates

Hypothesis:
“The variance in decay rates in both the diffuse and near fields
is related to PLR"

e somewhat similar to a measure of modulation
e we only consider negative gradients for ‘decays’

e written as 02(Agsn_)

PLR Qm = gW(O-2<)\:p*h7>>
Mapping Function

Decay Rates

Learn from training data Compute from the signals
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Each point represents one AIR in the training corpus of 203

20
5F .
—~ ...h;.." )
o 101 : ST
E 5 t‘.'_: asie ;;
e T T . o
& . s
A of 2 >
. (IS
5F .-
-10 1 1 1 1 1 1 1 |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Tso (s)
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NSV vs @), in the training data

10 T T T T T T T T
Increasing perceived level of

sl reverberation i i
< 6 £ EI 1
~< 1
< LB
> Ap = R

2t = ? . ]

£ 27
. = ==
-1 -09 -08 -07 -06 -05 -04 -03 -02

e 20,300 reverberant speech files from 203 AIRs in the
training corpus grouped by ranges of @,
e learn a 3rd order polynomial by least squares regression
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Aim to determine the true PLR of the evaluation corpus
e 28 listeners with self-assessed normal hearing

e 3 speech utterances for each of 10 AIRs
e MUSHRAR 12

* scoring range is inverted - more reverberant signal
receives a higher score

* hidden reference, R, and anchor, A, signals use low and
high reverberation

See www.acousp.org for a list of acoustic signal processing
resources, specifically impulse response datasets
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www.acousp.org

Listening Test Results

100 + (—

o IH8 ]

Score
3
1
+
+
F{}--
D]._
-
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0F— T |
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Comparative PLR Estimation Results

& ) X { v Q
@b\\ OQ\?\‘ ?\’%q Q\ Q@%QJ %(QO 30‘6’%@‘\?" ?\?\"\‘0“\ $¢»)
%@ Q\je/
Measure

Absolute Pearson correlation coefficients for each measure
evaluated against the listening test results
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Computational Complexity

| Algorithm | RRTF |
PESQ [7] 0.096
STOI [8] 0.1 o Relative Real-time Factor
Rprx [12] 0.57 normalized to SRMR
SRMR [14] 1
SRMRyorm [15] | 0.98
PLR-NSV 0.031
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Summary and Questions

Motivation for reverberation measures

Intrusive vs non-intrusive

Examples

Measures based on room acoustics and AIR models

New method for perceived level of reverberation based on
efficient data-driven approach

e Questions
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Measurement and Estimation

of Acoustic Impulse Responses
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AIR measurement: Introduction

e Direct AIR measurement requires reproduction of
impulse signal (band-limited to freq. range of interest)
e Physically challenging and undesirable for several reasons

[ W T

Indirect AIR measurement = system identification

e Reproduce stimulus and measure room response

e Estimate AIR from {stimulus, response} pair
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AIR measurement: Challenges

©DREAMS ITN

©Magnus Schafer, RWTH Aachen

Challenges when measuring/estimating AlRs

e Reproducibility

e Loudspeaker artefacts
e Noise robustness

e |dentifiability / persistence of excitation
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AIR measurement: Reproducibility

e Reproduction of stimuli in different
measurement trials requires loudspeaker
playback of prerecorded stimuli

e Accurate measurement of loudspeaker and oo s
microphone positions crucial when
measuring AlRs for spatial audio applications
(e.g. beamforming, rendering, localization)

©Jesper Kjar Nielsen, Aalborg University.

e Documenting room and measurement
setup (room geometry, boundary materials,
temperature, measurement hardware, stimuli)
strongly recommended

e Covering hardware and other objects with By

absorption foam advisable to avoid spurious
reflections

©Neofytos Kaplanis, Bang & Olufsen

©Jesper Kjaur Nielsen, Aalborg University
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AIR measurement: Loudspeaker artefacts

e Linear loudspeaker distortion: usually not compensated
e Nonlinear even-harmonic distortion: eliminable with
Exponential Sine Sweep (ESS) method [ 14

J - RIRh

time i

time |__ _)®__>
reverse

frequency

RIR
estimate

©Giuliano Bernardi & Toon van Waterschoot, KU Leuven time

e Nonlinear odd-harmonic and impulsive (e.g. rub & buzz)
distortion: requires careful level calibration [1°]
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AIR measurement: Noise robustness

e Organize measurements during silent periods (overnight)
e Increase length of measurement stimuli:
* Doubling amount of measurement data yields 3 dB
increase of measurement SNR

* Result only holds for broadband random noise, not for
impulsive noise or nonlinear artefacts

e Synchronous averaging of responses to short
stimulilt®l:
* SNR increase as above, with possibility to discard
responses affected by impulsive noise
e Applicable to many types of stimuli, e.g. ESS,
maximum-length sequences (MLS), inverse repeated
sequence (IRS)
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AIR measurement: |dentifiability

e System identification setup for AIR estimation

b=[b(0) b(1) ... bN-1)]"
s(0) z(0)
s(1) z(1)
s = . -v—»m—r RIR h > X = :
s(N—=1)] | N i #(N —1)
e > model h Q=
e i
Signal model: x =Sh + b
2(0) 5(0) s(=1) ... s(=L+1)7T ho b(0)
(1) 5(1) (0) s s(=L+2)| | hy b(1)
; = ; : A ; N ;
«(N — 1) SN=1) s(N=2) ... sN-1)] lhs 1 b(N — 1)
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AIR measurement: |dentifiability

AIR identifiable only when stimulus is persistently exciting:

rank(S) > L

e Densely sampled AlIRs are excessively long: O(L) = 10*
e Lack of identifiability occurs with speech/audio stimuli

e Regularization is crucial for (online) AIR estimation
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AIR measurement: |dentifiability

e Tikhonov regularization (e.g. least squares AIR estimate)

min ||x — Sh|>+\||h|? = h = (STS+AI)~'8"x
h

e Levenberg-Marquardt regularization (e.g. normalized least
mean squares adaptive AIR estimate)

min || 2(n) —s” (n)h(n) |*+Al[h(n) — h(n — 1)||”
h(n) ~~
e(n)

CoN s(n)e(n)
= h{n) =h(n) + s(n)s(n)+A\

e Optimal and generalized regularization achievable in
Bayesian framework [7]
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AIR measurement databases

Selection of open-source AIR measurement databases for different
room types and measurement setups (Www.acousp.org):
e GTAC Database (2017): 1 room, 34560 AIRs [18]
e SUBRIR Database (2017): 1 room, 48 very LF AIRs [1°]
e ACE Challenge Corpus (2016): 7 rooms, 700 AlRs, incl. noise
measurements [19]
e SMARD Database (2014): 1 room, ca. 1000 AIRs, incl.
reverberant signals 120
e C4DM Database (2010): 3 rooms, 468 AlRs, incl. B-format
recordings [21]
e Aachen IR Database (2009-2010): 10 rooms, 58 AlRs,
binaural /dual-mic (22
e Oldenburg IR Database (2009): 5 rooms, 2846 AlRs,
binaural, incl. noise/HRTF measurements (23]
e MARDY Database (2006): 1 room, 72 AlRs [24]
e Open AIR Library (2010-2017): platform for sharing AIRs [2°]
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AIR interpolation

AIR is point-to-point response

e How to measure spatial variations of room acoustics?

e AIR interpolation yields AIR estimates for virtual
source/observer positions

e Interpolation often relies on wave-based model

ON \At ello, KUL
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Wave Field Analysis

e AIR measurements from dense linear array (microphone
spacing = 5 cm) reveal wave patterns [?°]

e Patterns can be interpolated and extrapolated using
plane-wave assumption

ik

sl
&

i

1
offset & [m]

©A. J. Berkhout, D. de Vries, J. J. Sonke, TU Delft
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Plenacoustic Sampling

How densely should sound field be sampled?
Plenacoustic function (PAF) describing spatiotemporal
sound field is approximately spatially bandlimited [?"]

e Example: Slice of PAF spectrum for 1-D spatial sampling

¢ Plenacoustic sampling theory: Optimal spatiotemporal

sampling schemes and reconstruction bounds 7]

*  Example: Hexagonal 2-D spatial sampling scheme

e Example: Reconstructing sound field up to 1.3 kHz with

100 dB SNR requires microphone spacing = 12.35 cm

slice of the spectrum of the PAF for 3 different array sizes
30y

Amplitude [dB]

50

0
o [rad/m]
©T. Ajdler, L. Sbaiz, M. Vetterli, EPFL
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Sparse AIR interpolation

Sparse AIR interpolation in compressed sensing
framework
e Temporal sparsity of early reflections 2!
e Sparsity of low-frequency room modes in plane-wave
decomposition domain [?!

e Spatio-temporal sparsity of equivalent sources 13
e Random sampling with moving microphone 31
g 0 0w A,
T0t® L] L] L] o Uy
[ ]
©Niccolé Antonello, KU Leuven ©Fabrice Katzberg, University of Liibeck
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Summary and Questions

e AIR measurement challenges: reproducibility, loudspeaker
artefacts, noise robustness, identifiability

e AIR measurement databases overview

e AIR interpolation: wave field analysis, plenacoustic
sampling, sparse interpolation

e Questions?
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Blind System ldentification (BSI)

1 sound source, 2 or more microphones — find the AIRs

e Blind - just use the microphone signals

Conventional BSI methods rely on the multichannel
cross-relation (CR) property

e only valid for fully-modelled systems
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Acoustic SIMO System

Acoustic
Impulse  Additive

Responses ~ Noise

h by(n)
s(n) 4 z1(n)
h1 —>@ T
ba(n) |
] R —
. . |
I by(n)l |
||
|_+_>@ :li : 2 (n)
|
)
vy v .
Blind System | 8 = h
Identification
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Signal Model

In a reverberant environment with a single sound source and
an M-element microphone array at time n and channel ¢

x;(n) =H;-s(n)+by(n) i=1,2,... M
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Signal Model

In a reverberant environment with a single sound source and
an M-element microphone array at time n and channel ¢

x;(n) =H;-s(n)+by(n) i=1,2,... M

e x;(n): the K x 1 signal vector of the i-th microphone
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Signal Model

In a reverberant environment with a single sound source and
an M-element microphone array at time n and channel ¢

x;(n) =H;-s(n)+by(n) i=1,2,... M

e x;(n): the K x 1 signal vector of the i-th microphone

Fusol il - h R 0
O e cec pes Mgpen coc 0
0 --- 0  hyp hyy -0 hypa
e constructed from h; = [hig hiy ... hip )"
e s(n): the K + L — 1 x 1 source signal vector

b;(n): the K x 1 noise signal vector
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Cross-filtered signals

2-channel example:

Mic_rophone
Sound signals Cross-filtered
source 1 (n) N signals
H > H —
3 ( n) 1 (Z ) 2 (Z )
xa(n) .
Hy(z) > Hi(z) —*

Cross-filtered signals are equal if [:[172(21) = aH 5(2) or zero
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Fully-modelled BSI

temporarily suppress time dependence n

Cross-relation (CR) property

xlzs*hl ZEQZS*hQ

T1 % hog = s * hy * hy To*x hy = 8% hg * hy
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Fully-modelled BSI

temporarily suppress time dependence n

Cross-relation (CR) property

xlzs*hl ZEQZS*hQ

T1 % hog = s * hy * hy To*x hy = 8% hg * hy

7

i,j =12, M,i#j

T _ 1.7
h Xj—thi
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Fully-modelled BSI

temporarily suppress time dependence n

Cross-relation (CR) property

xlzs*hl ZEQZS*hQ
T1 % hog = s * hy * hy To*x hy = 8% hg * hy
Ty I
i,j=12,....,M,i #j

Let g be an estimate of h, cross-filtered signals 7;; = g x;

CR error Sum squared error
M-1 M
Eij = Tij — Tj; x(g) = Z Z E{[e;]%}
i=1 j=i+1

AIRs estimated by g that minimize x(g) with unit-norm
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|dentifiability Conditions

The AIRs can be identified up to an unknown scale factor
(unknown filter in the case of subband processing) provided
that:
e C1 - The polynomials formed from h; = [h;o h;1 ...] are
co-prime so that the channels’ transfer functions H;(z)
contain no common zeros

e (2 - The autocorrelation matrix of the source signal,
R,, = E{s(n)s”(n)}, is full rank

e Undermodelling is always a problem in realistic cases
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Non-unique Solutions

e Cross-relation approach is not robust to additive noise
e [terative solutions use an instantaneous estimate R,, of
the cross-relation matrix R
* the gradient descent direction consistently steers the

adaption towards the null space of R,,, which contains h
only in the absence of noise

e Recent research on block-based Rayleigh quotient cost
functions with and without normalization has shown
improved noise robustness 3%
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NPM (mis-)Convergence Curves

Mean NPM W|th 1st and 9th percentlle for SNR= 15dB L=500, M= 5
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Under-modelled BSI

For BSI with h under-modelled by g
Zij(n) = Zije(n) + Tiju(n),

with Z;; . and Z;;; early and late cross-filtered signals and
again temporarily suppressing n
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Under-modelled BSI

For BSI with h under-modelled by g
Zij(n) = Zije(n) + Tiju(n),

with Z;; . and Z;;; early and late cross-filtered signals and
again temporarily suppressing n

If g, = Oéhi’e, then
e early part is correctly modelled: Z;;. = ;i

e late part acts as unwanted noise: Z;;; # Zj;;
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Under-modelled BSI

For BSI with h under-modelled by g
Zij(n) = Zije(n) + Tiju(n),

with Z;; . and Z;;; early and late cross-filtered signals and
again temporarily suppressing n

If g, = Oéhi’e, then
e early part is correctly modelled: Z;;. = ;i

e late part acts as unwanted noise: Z;;; # Zj;;

Under-modelling

CR property holds only for the early cross-filtered signals
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Under-modelling Error Analysis

Under the reverberant signal model*

E{le;]°} = B{[Eije — Tjs,e)’} + E{[s0 — 504)°}

bias term

e bias term is dominated by E{[%;;]*} + E{[Z;:.1]*}
= always large

i,n n
x;' o and xj are uncorrelated
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Under-modelling Error Analysis

Under the reverberant signal model*

E{le;]°} = B{[Eije — Tjs,e)’} + E{[s0 — 504)°}

bias term

e bias term is dominated by E{[%;;]*} + E{[Z;:.1]*}
= always large

e as estimated AIRs approach the true values
E{[Zjc — Tjie)*} — 0, bias term will dominate
= no convergence!

i,n n
x;' o and xj are uncorrelated
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Cross-correlation of Cross-filtered Signals

Consider the cross-correlation between cross-filtered signals:
Vi = B{Zi; - Zji}
Under-modelled case

Yij = B{[Zije + Fijal [£gie + Fjig]}
= E{[Zi5eTjie]} + BA[Ti0%50] }

bias term
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Cross-correlation of Cross-filtered Signals

Consider the cross-correlation between cross-filtered signals:
Vi = B{Zi; - Zji}
Under-modelled case

Yij = B{[Zije + Fijal [£gie + Fjig]}
= E{[Zi5eTjie]} + BA[Ti0%50] }

bias term

e bias term is smaller than for CR
e cross-correlation of noise-like late reverberation
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Cross-correlation of Cross-filtered Signals

Consider the cross-correlation between cross-filtered signals:
Yij = B{Zi; - T1}
Under-modelled case
Vig = B{[Zij.e + Tial[Tjie + Tjia]}
= E{[ZijeZjie)} + E{[Zi;uZ;i1] }

bias term

e bias term is smaller than for CR
e cross-correlation of noise-like late reverberation

e when estimated AIRs approach the true values,
E{[ZijeZjie]} increases and bias becomes less dominant
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Comparison Simulation Results - Fully-modelled

True RIR 0.5 Proposed, NPM = -5.3dB
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Comparison Simulation Results - Under-modelled

Amplitude
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Summary

e Determining the acoustic channels between source and
sensors gives crucial information regarding the
reverberation process

e |dentifying the acoustic channels (system) blindly is
challenging because the channels are long and
time-varying

e Current research on improved procedures continues to
bring benefits

e With sufficient accuracy of BSI, dereverberation can be
performed by channel equalization
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Questions/Comments

e Questions
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Room Acoustics

Modelling and Simulation
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Outline of the Section

e OQverview of available classes of room acoustic models and
some recent work in each class
e Focus on popular geometric-based models:
* Image method
* Ray tracing
e Focus on perception-based models:

* Feedback Delay Networks
e Scattering Delay Networks
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Overview

Delay ne
4
Schroeder reverb

Commercial reverb

Digital Feedback

waveguide Delay Networks
(FDN)

Convolutional (FIR)
IR
Common Acoustical Pole

Orthogonal Basis Function
Subband techniques

eyvicalaca

Image Method
Ray-tracing
Beam-tracing

Scattering
Delay Networks
(SDN)

Networks
(DWN)

> Digital Waveguide Mesh
Finite-difference Time-Domain
Bounday Element Method
Finite Volume Method

e Excellent overview of past 50 years and more of artificial

reverberation by Valimaki et af. [33 34
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Overview

> Digital Waveguide Mesh \_
Finite-difference Time-Domain

Bounday Element Method
Finite Volume Method

Wave-based models

Discretise wave equation in time/frequency and
space/boundary/volume

e E.g. FDTD B approx. derivatives with finite differences:

3 ntl _ oon n—1 7 7 B n
9°p P, ~2PUm,i tPim %P Pi1,m,i ~ 2Plm,i T Pit1,m

ot? T2 ox2 X2

e Convert wave equation into set of linear equations
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Overview

o
> Digital Waveguide Mesh
Finite-difference Time-Domain
Bounday Element Method
Finite Volume Method

Wave-based models

Discretise wave equation in time/frequency and
space/boundary/volume

e Recent work aimed at characterising boundary condition
[36. 37, 38] ' source excitation 3%, GPU parallelisation 140 411
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Overview

o
> Digital Waveguide Mesh
Finite-difference Time-Domain
Bounday Element Method
Finite Volume Method

Wave-based models

Discretise wave equation in time/frequency and
space/boundary/volume

e High physical accuracy...

e ...but extremely high computational complexity
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" Image Method
Ray-tracing
Beam-tracing

Geometrical acoustics models

Models approximating sound propagation using rays

e Lower computational complexity...

e .. .but lower accuracy
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Overview

Delay ne
Schroeder reverb
Commercial reverb
Digital _ Feedback
waveguide Delay Networks
Networks ~ (FON)
(OWN)

Scattering
Delay Networks
(SDN)

Delay Networks

Methods that do not physically model sound propagation in
rooms, but aim to create pleasing reverberant sound

e Very low computational complexity (historically first type
of artificial reverberators)...

e _.but no physical accuracy and no explicit modelling
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Overview

" Convolutional (FIR)
IR
Common Acoustical Pole

Orthogonal Basis Function

Subband techniques

Measurement-based methods

Form parametric representation of room acoustics from real

measurements

e E.g. finite impulse response model:

e Simplest model
e Very large number of parameters (if Fs = 40 kHz,

Tso = 2 s, then 80,000 parameters)
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Overview

# Convolutional (FIR)
IR
Common Acoustical Pole

Orthogonal Basis Function

Subband techniques

Measurement-based methods

Form parametric representation of room acoustics from real
measurements

e More compact parametric representation possible with
other models, e.g. pole-zero models (421 common
acoustical poles [*31 orthogonal basis function models 4]
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Image method (IM) for single reflector

Image
source
e p
10
|
|
|
A |
Wall :
|
Microphone Microphone !
|
o
Source Source

e Wave propagation in half space is equivalent for:
1. source and wall
2. source and image source (no wall)

e Exact for rigid wall (Vp-n =0)
e Approximation for non-rigid wall
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Image method (IM) for multiple surfaces

Wall

Microphone

e Question: what about multiple walls?
e Remove wall, mirror source and opposite wall

e Repeat until no wall in the region of interest
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Image method (IM) for rectangular room

e Rigid wall: exact solution of wave equation [*°]
e Non-rigid wall: geometric approximation

e Due to regularity of lattice: simple software
implementation

e Spatial periodicity of image sources can be exploited for
fast rendering in multiple positions 4!
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Ray tracing [47]

e Source emits rays in all directions

e Specular reflections

e Diffraction and scattering also possible

e Build AIR by recording time and amplitude at receiver

e Choice of receiver size and number of rays is critical

< Receiving

volume

Odeon®1385-2004 Time <ms>: 204
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Comparison Ray tracing and Image Method

e Ray tracing
e Complexity can be controlled by number of rays
e Can model edge diffraction, scattering
* No guarantee of low-order reflections
e Image Method
* Elegance, solution of wave equation for rigid walls
e Guaranteed all reflections up to certain order present
+ Good rendering of low frequency modes [*8]
e High computational complexity for long AlIRs
ey

— IM Deterministic

60 80 100 200 300 400
Frequency [Hz]

Magnitude [dB]
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Sweeping echoes in perfectly rectangular rooms

e Perfectly rectangular rooms cause sweeping echoes
e Due to orderly alignment of images along 3 axes [*¢]

e Regular simulation setups yield stronger sweeping echoes

207 20|

N sk o N sk o
g1s 502 g1s )
B 3 B 4
2 10] 2 210 g
§ £ § £
R 1002 g 5 &
£ = £ o =

02 04 038

02

04 0
Time [s] Time [s]

Room dimension: 4 x 4 X 4

Room dimension: 4.
Mic. position [1, 2, 2]

Mic. position [1.

»
o X

Source position [2, 1.5, 1] Source position [2.7,1.8,1.9]
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Sweeping echoes in real rooms

e Sweeping echoes can actually be perceived in very
regular, empty rooms (e.g. squash court) (4]

But why not in typical rooms?

e Room imperfections, objects

e Simulated room with out-of-square imperfections

e Regularity of lattice already broken with 1% imperfections
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Perception-based models

e Overview paper by Hacihabiboglu et al. 5%

e Often separate modules for early and late reverb
e Early reflections using IM and should be spatialised
correctly

y(n)

(J. O. Smith, https://ccrma.stanford.edu/~jos)

Desired qualities for late reverb:

e Smooth decay: high echo density
e Smooth frequency response: high mode density
e Moorer's ideal reverb: exponentially decaying white noise
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Feedback delay network

(Schlecht and Habets, 2017)[51]

e Generalization of Schroeder reverberator
(Stautner and Puckette, 1982) [52]

e Design: start with lossless prototype (7o = o0) to
obtain noise-like reverb and add losses to obtain desired
reverberation time in each band
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Advancements in FDNs

e Jot and Chaigne (1991) 153l

e Practical procedure to design delays and FDN matrix to
obtain desired echo density and frequency-dependent
reverberation time

e Rocchesso and Smith (2002) 54

e Equivalence with DWN
e Circulant feedback matrix with increased efficiency

e Schlecht and Habets (2015, 2017) 5% 5% 56l

* Time-varying FDNs: reduce artifacts and obtain more
lively reverberation tail

e Unilosslessness: new definition of lossless FDN matrix

e Closed-form and approximated formulas for echo density

e Procedure to design delays for desired mixing time
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Digital waveguide networks (DWN)

Output
LOSSLESS P
o 37ms

EP -
© O ms 245 ()
3\ g .
N\ Y 0)9 > 4y “5/@

2% 4
1507 ms & Zis(n) s,
$ Ny S5

Input 25
npuf @ s 4(n)

Fo= 4.1 kHz

(]

e
507 ms "

e Network of bi-directional delay lines connected at
scattering junctions (Smith, 1985) [°7]

e Can be interpreted as network of acoustic tubes

¢ Question: How to set parameters (delay line lengths,
network connections, scattering matrix..)?
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Scattering delay network (SDN)

e Design DWN based on characteristics of a physical room

e Position nodes at first-order
reflection points

e Fully connected DWN network

e Mono-directional lines for
source-junction and junction-mic
(De Sena et al., 2015) 158l

Two interpretations:

e Physical network of acoustic tubes

e Approximation of image method
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approximation of image method

e Correct rendering of LOS and first-order reflections in
time, amplitude and direction
e Approximation of second and higher-order reflections, less
important perceptually

Source

Source

O
Mic.

1

l-order reflection

Room Acoustics Modelling and Simulation

Il-order reflection

[s]
Another ll-order reflection
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approximation of image method

e Correct rendering of LOS and first-order reflections in
time, amplitude and direction
e Approximation of second and higher-order reflections, less
important perceptually

El [5]
Am: Source
[5] [5]

" <

,/ »

-~ o

Mic Mic.

5 5 5|

l-order reflection
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SDN performance

e Significantly faster than convolution alone
e All parameters of model derived from physical properties

e Perceptually more important information given precedence

Advantages w.r.t. delay networks:

e No need for hands-on parameters tuning
e Physical interpretation = spatialisation possible

e More elegant solution than separate early/late modules
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Recent advancements in SDN

e Stevens et al. (2017) P9
* Extension to exact second-order reflections
e Implementation of direction-dependent scattering (e.g.
modelling of trees)
* Modelling of outdoor scenes (sky absorbing nodes)
e Schlecht and Habets (2017) [°4:

* Showed scattering matrix is unilossless

(Stevens et al., 2017) [51]
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Summary

e Wide variety of room acoustic models and simulators

e \Wave-based models: most accurate available but
computationally expensive

e Geometric-models: ray-like assumption, lower complexity
but also lower accuracy

e Perception-based models: very fast, attempt to
reconstruct only perceptually relevant features of
reverberation

e Measurement-based models: parametric representation of
room acoustics based on measured AlRs

e Significant advancements have been made in all classes

e Interesting research direction is to find connections
between classes (e.g. SDN) and to combine advantages
of different classes
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Questions/Comments

e Questions
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Dereverberation

Processing Methods
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Overview of dereverberation methods

Traditionally, dereverberation processing methods are classified
into two categories (6]

e Reverberation Cancellation Methods

* Modelling reverberation as convolutive interference

* Recovering speech source signal by (multi-channel)
deconvolution

* Relying on AIR or speech source model

¢ Reverberation Suppression Methods

* Modelling reverberation as additive interference

* Recovering speech source signal by spectral/spatial
enhancement

* Relying on spectral /spatial reverberation measure

Recently, some hybrid methods have been proposed as well.
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Reverberation cancellation

In reverberation cancellation, reverberation is modelled as
convolutive interference

T T T 1T
X = |X X] .. X
S(O) [ 0 1 M 1} 6(0)
s(1) . e(1)
_ reverberation _
® : | ARsh % cancellation | > © :
s(N —1) e(N—-1)

©Toon van Waterschoot, KU Leuven

e Blind system identification and inversion

e Multi-channel linear prediction
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Blind system identification and inversion

Two-step procedure

e Step 1: Blind system identification (BSI, see Section 4)

e Step 2: Multi-channel inverse filter design

T T T r
X = |X X] ... X
5(0) [ 0 1 1\471} ¢(0)
- s(1) _| ARs inverse | L= e(1)
: h . filters w :
S(N—1) i 3 e(N ~ 1)
- i Step 2

L1~ .
Step 1 -g--: model h |-
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Multi-channel inverse filter design

e Least-squares FIR inverse filter design problem:
min ||d — Hw]|?
w

equalization delay

[61] f N T
* Target response® d=[ 0 ... 0 10 ... 0]
e SIMO convolution matrix H = [HO HM_l]

e Multiple-input/output Inverse Theorem (MINT)[62l:
Minimum-norm solution w = H” (HH”)~'d exists if
both

o Estimated AIRs h; do not share common zeros

e FIR inverse filter length L, = %

o In case of perfect BSI (H = H), perfect dereverberation
is achieved
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Multi-channel inverse filter design

e Challenges related to MINT-based inverse filter design:
* Online BSI required in dynamic scenarios
* Inversion highly sensitive to estimation errors
* Accurate channel order estimate required
e Recent advances in multi-channel inverse filter design:
e Channel shortening/reshaping: maximize early
reflections energy while minimizing late reverberation
(Rayleigh quotient criterion) [63 64]
* Partial MINT: maintain early reflections in target d [0°]
* Relaxed multi-channel LS: remove equations for early
reflections (weighted LS criterion) [60]
* Regularization: (generalized) Tikhonov regularization
in LS (67 68] op Rayleigh quotient criterion [69]
* Sparse regularization: promote spectral [%8] or
time-frequency sparsity 7% of equalized speech signal
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Multi-channel linear prediction

Multi-channel linear prediction (MCLP)

e Prediction of clean speech signal from multiple
microphone signals

e No AIR estimates required
e Operates in time or time-frequency domain

T T T 7
X = |X Xy ... Xy
5(0) [xd v ¢(0)
s — s(1) _,| AIRs channel o= e(1)
: h selection @ i :
s(N —1) N i i e(N—1)
e IR pr_ed'rc\tion [
5 ->| filters'w ]
- 1

©Toon van Waterschoot, KU Leuven
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Multi-channel linear prediction

M—-1 Ly
MCLP signal model: zq(n E g wixi(n —1)+ e(n)
—~—~
\Z 1 i=d _  enhanced
R signal
reverberation

e For white source signals, MCLP achieves perfect
dereverberation under MINT conditions

e For speech source signals, “excessive whitening” of
source is alleviated by
o Increasing prediction delay d [l
* Prewhitening microphone signals with inverse source
signal model [2

e Probabilistic modeling of speech source signal [73, 74]

e Adaptive MCLP algorithms based on RLS 75 76. 77]
and Kalman filters [78 79 8 have recently been proposed
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Multi-channel linear prediction

Simulation example: MCLP with sparse time-frequency prior
for speech source signal (Juki¢ et al., 2015 [4])

Clean speech

Reverberant speech
(T60 = 750 ms)

Enhanced speech
(M =4)
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Reverberation suppression

In reverberation suppression, reverberation is modelled as
additive interference

T T T T
X = |X X7 ... Xy
sgog Xt hr1] e(0)
s(1 - - e(1)
_ direct reverberation _
s = . —> —> e = .
: AIR path suppression :
s(N —1) e(N—1)
T T T T
Xp = [Xr,O X'r,l e Xr,M—l}

©Toon van Waterschoot, KU Leuven

e Single- & multi-channel spectral enhancement
e Data-independent & data-dependent beamforming
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Spectral enhancement

Spectral signal model (short-time power spectral density):

¢:E(p7 k) - ¢xd(p7 k) + ¢$T(p7 k)

Spectral enhancement

e Step 1: Estimate microphone signal, direct-path signal,
and/or reverberant signal PSDs

e Step 2: Apply spectral gain function g(p, k), e.g.

s, (p, k)
: k) =1- 2z
9p. ) bz(p, k)

Dy (P, k)

k
9, k) = (. k)

Key assumption: direct-path and reverberant signals
statistically uncorrelated
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Single-channel spectral enhancement

Single-channel PSD estimation
e Use statistical AIR model (e.g. Polack’s model) to
estimate (late) reverberant signal PSD &l

e Statistical AIR model requires prior information on room

acoustics, e.g. by means of reverberation measures
(C50, T60, etc., see Section 3)

x e(1)
_ D STFT spectral STFT _
X = e =
: :"|analysis T) gain [ synthesis — :
2(N —1) : {3 e(N —1)
i__, estimate
: b, (p, k)
g T
reverberation| _J AIR
measures model

©Toon van Waterschoot, KU Leuven
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Multi-channel spectral enhancement

Multi-channel PSD estimation: Spatial blocking approach

e Estimate reverberant signal from microphone signals by
spatially blocking direct-path signal (82

e Blocking matrix design relies on estimate of source signal
direction of arrival (DOA)

X0 6(0)
x = X1 ’K )f STFT N spectral | | STFT | s e— e(1)
: _)D_,_i_, analysis [17] gain synthesis :
XM-1 i i i ? e(N —1)
i i L,| estimate
i x
i L
i | blocking | __] estimate
> matrix 2, (p, k)

©Toon van Waterschoot, KU Leuven
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Multi-channel spectral enhancement

Multi-channel PSD estimation: Spatial coherence approach

e Key assumption: direct-path signal is coherent,
reverberant signal is diffuse

e Estimate spatial coherence from microphone signals to
derive signal-to-diffuse ratio (SDR, equivalent to DRR)
and design SDR-based spectral gain function [83: 84

e SDR estimation relies on estimate of source signal DOA
or use of directional microphones

X0 ¢(0)
x = x ’{ ).’ STFT N spectral | | STFT | _._ e())
: _,D_'_E_, analysis [1 | gain synthesis :
i
XM-1 i i i + e(N—1)

e 1| estimate
i SDR
i x
i L
e > estimate

--------------- 31 coherence

©Toon van Waterschoot, KU Leuven
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Data-independent beamforming

Superdirective beamforming

e Key assumption: direct-path signal is coherent,
reverberant signal is diffuse

e Beamformer that minimizes diffuse interference (i.e.

maximizes directivity) is superdirective beamformer [%°

e Superdirective beamformer design requires source
signal DOA estimate and diffuse reverberation covariance
matrix

e Performance depends strongly on number of microphones,
array geometry, source signal DOA, and frequency
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Data-dependent beamforming

Generalized Sidelobe Canceller (GSC)

e Adaptive implementation of MVDR beamformer
¢ No diffuseness assumption on reverberant signal

e Fixed beamformer (FB) and blocking matrix (BM) design
relies on source signal DOA estimate

e Superdirective FB design: data-dependent beamforming
always outperforms data-independent beamforming

X e(0)
N fixed o e(1)
: beamformer @ ! :
XM—1 R E I e(N-1)
AN 1
blocking [*] data-dependent | |

L->l matrix |5 beamformer w
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Data-dependent beamforming

e Wiener solution for GSC is biased due to source signal
coloration [0l

e Impact of bias on enhanced signal very similar to
“excessive whitening” in MCLP

e Prewhitening proposed for MCLP ["? can also be used

in GSC [60]
X0 e(0)
X1 8(1)
x=| . fixed GSC [—>e=| .
XM—1 i ?copy e(N —1)
~1-53] prewhitening [-3] adaptive | i filters
) filter L->] GSC w

©Toon van Waterschoot, KU Leuven

e Note: Multi-channel Wiener Filter has recently also been
employed for dereverberation processing 187!
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Hybrid methods

e While based on different signal models, structural
equivalence exists between MCLP and GSC

e Both methods suffer from bias and excessive whitening
due to source signal coloration

e With ideal blocking matrix design (relying on AIR early
reflections estimate), GSC performs equivalent to
MCLP, providing perfect dereverberation for white
source signals under MINT conditions (8l

e GSC additionally provides coherent noise cancellation

channel ]
% selection @I > yb fixed BF —)@_!_)

R, w,

[ 17

. Pl . P

- it i o) N o

103 o [ predigtion [§ P datasdep. |} |

-al z t—; filterssw i 2ABMLL  BEw i

MCLP k. 1 GSC . i

(88]
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Hybrid methods

e Similar equivalence can be observed between MINT-based
inverse filter design (requiring BSI) and filter-and-sum
beamformer (FSB) design (requiring source signal DOA
estimate)

e MINTFormer [#): hybrid and tunable method
trading off MINT-based dereverberation performance with
FSB robustness by weighting MINT and FSB criteria

min Y Jrs(W) + (1 —v) Jvvr (W)

inverse
ﬁ\;o filters w — ﬁo FSBw

-+ BSI | 3] DOA
MINT ->) FSB -»| estimation

>

[

©Toon van Waterschoot, KU Leuven
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Hybrid methods

Simulation example [®: Output DRR vs. MINTFormer
tuning parameter for varying AIR estimation quality (measured
by AIR normalized projection misalignment (NPM))

m“i,n vJIrsg(W) + (1 — 7) Jvint (W)

= -NPM = -50 dB
NPM = -40 dB
- NPM =-35dB
NPM = -30 dB
#-NPM =-25dB
NPM = -20 dB
NPM = -15dB
+-NPM=-10dB
NPM = -5dB

0 0.2 0.4 0.6 0.8 1

©Patrick Naylor, Imperial College London
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Conclusion
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Conclusion

Quantifying level of reverberation is highly useful.
Several “blind” methods are available with good accuracy
in some cases. Recent research includes also prediction of
human perceived level of reverberation.

AIR measurement follows well-established procedure
and various open-source databases are available.
Substantial progress in AIR estimation (blind and
non-blind) has been made while some challenges still
remain particularly for real acoustic scenarios.
Regularization turns out to be crucial when addressing
AIR estimation and deconvolution problems.

Broad variety of room acoustic models have been
proposed in past 50+ years, that can be classified into
physical-based models, delay networks, and
measurement-based models.

Conclusion
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Conclusion

e For reverberation synthesis applications, models can

broadly be ordered on scale from high accuracy and
complexity (physical models) to low accuracy and
complexity (delay networks).

Significant advancements have been made in different
model classes but more work remains to be done to find
links between models and to combine advantages of
different classes.

Recent work in dereverberation processing has brought
increased robustness and provides outlook towards
adaptivity and scalability.

Solving dereverberation problem using system
identification can be considered as partially solving
acoustic scene analysis problem.

Conclusion
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Questions/Comments

e Questions
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