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Objective
I Making listener feel transported to a di↵erent auditory scene
I This talk focuses on virtual scene, but same concepts can be

applied to real (recorded) scene
I Applications in video games, VR/AR, architectural acoustics..
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About this talk

I Interrupt me!

I Details and maths left to references (at the end)

I Demos after this talk
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Reproduction of plane waves

I Let’s start from a relatively simple problem

I We want to reproduce a plane wave, and we assume that
incident direction, ✓s , is known

I Relevant case for spatial audio objects (MPEG-H)

I The plane wave could represent e.g. a single sound source or
a wall reflection

I If we solve this, summation of plane waves trivial (linearity)

Reproduced plane wave should be:

1. perceived in correct direction (low localization error)

2. easy to localize (low localization uncertainty)

I in the largest possible area (large sweet spot)
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Physical and cross-talk cancellation methods

SFR Multichannel 2-Channel

Channel count 50+ < 10 2
Equipment Load High Commercially viable Low
Psychoacoustics None Required Critical
Sweet Spot Large Medium, small group Small, individual

I Sound Field Reconstruction (SFR) provide mathematically
elegant solution (e.g. HOA, WFS)...
I but large number of loudspeakers: r = c

f

N

2e⇡ , e.g.
f = 10 kHz, r = 0.1 m ) N = 56

I 2-channel (cross-talk cancellation) methods, only two
channels...
I but small sweet spot (e.g. [Rose et al., 2002] report ⇡ 3 cm)

I We’ll focus on multichannel systems with limited equipment
load, which need to leverage somehow psychoacoustics e↵ects
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How many loudspeakers to use to reproduce plane wave?
I First question: should we use > 2 loudspeakers for each

source?
I Active intensity (AI) fields for plane waves

I Fluctuation speed depends on angle between loudspeaker pair
I Answer: use only the two loudspeakers closest to direction of

plane wave [De Sena et al., 2013]
I This reduces problem to good ol’ stereophonic reproduction

9/43



How many loudspeakers to use to reproduce plane wave?
I First question: should we use > 2 loudspeakers for each

source?
I Active intensity (AI) fields for plane waves

I Fluctuation speed depends on angle between loudspeaker pair
I Answer: use only the two loudspeakers closest to direction of

plane wave [De Sena et al., 2013]
I This reduces problem to good ol’ stereophonic reproduction 9/43



Frequency-independent inter-channel di↵erences

I What should we do with these two loudspeakers?

I Consider frequency
independent inter-channel
time di↵erences (ICTD) and
level di↵erences (ICLD)

I ICTD/ICLDs lead to low
coloration [Spors et al.,
2013], which is most
important attribute for sound
quality [Rumsey et al., 2005]

I As long as ICTD below echo threshold, listeners will perceive
a fused “phantom source” (summing localization e↵ect)
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Position of phantom source
I Position of phantom source depends on ICTD/ICLD pair
I Same position can be achieved with di↵erent ICTD/ICLD pair
I One can use e.g. intensity only (most commercial sound

recordings), time only, or time-intensity
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Not all ICTD/ICLD pairs are created equal
I ICTD/ICLD pairs lead to di↵erent localization uncertainty
I Computational model in [De Sena et al., 2019]:

I Inconsistent ICTD/ICLD lead to high uncertainty
I Vertical bands: 2 replicates at one ear, but only 1 at other
I Intensity-only methods have lowest uncertainty
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Localization uncertainty in o↵-center positions

I Listener moves 10 cm to the right, then entire plot moves
(approximately) to the right

I Now intensity methods lie in area with high uncertainty!
I Time-intensity largely avoids this area
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What is happening?
I Useful to define “relative”

ICTD/ICLD as observed by
the listener:

RICLD ⇡ ICLD� x
rl

20 sin
�
�0
2

�

log
e
(10)

,

RICTD ⇡ ICTD� x
2
c
sin

✓
�0

2

◆
.

where �0 base angle, x
lateral displacement and c

speed of sound

I E.g. consider ICTD = 0 ms and ICLD = 5 dB (left leading)

I RICTD = �0.29 and RICLD = 4.78, which are contradicting

I Adding a small ICTD will delay the onset of contradicting
RICTD/RICLD pairs
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Section Conclusions
I Intensity methods have lower uncertainty in center
I Time-intensity reduces uncertainty in o↵-center positions
I More ICTDs (within limits) ) lower uncertainty o↵-center
I Trade-o↵ between uncertainty in center and o↵-center
I In general, unknown how much listener drifts from center
I We can e.g. set max ICTDs such that avoid vertical bands
I See [De Sena, 2019] for details of parametrization
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Extensions

I Concepts recently extended to third dimension [Erdem et al.,
2019]

I Time-intensity in the vertical dimension leads to a perceived
improvement in stability of sweet spot [Andrew-Jones, 2019]
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Perceptual Simulation of Room Acoustics

I So far we discussed how to render single plane waves, e.g.
individual sound sources

I How do we simulate the acoustics of an entire space?
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Overview

Convolutional (FIR) Ray-tracing
Image Method

Common Acoustical Pole

Orthogonal Basis Function

IIR 

Subband techniques 

Beam-tracing Scattering
Delay Networks

(SDN)

Bounday Element Method

Feedback 
Delay Networks

(FDN)

Digital 
waveguide 
Networks

(DWN)

Finite Volume Method

Schroeder reverb
Commercial reverb

Digital Waveguide Mesh

Finite-difference Time-Domain

Physical-based

Delay networks

M
ea

su
rement-based

Geometrical acoustics

Wave-based

I Overview of more than 50 years of room acoustic simulation
in [Välimäki et al., 2012], [Välimäki et al., 2016] and
[Hacıhabiboğlu et al., 2017]

I Wave-based models are the most accurate ones
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Rendering of dynamic scenes with wave models

I In a complete wave model of a room:
I sources and listeners can be moved
I spatialized using microphone arrays or “virtual dummy head”

Example: How expensive is a wave-based model?

I Audio bandwidth = 20 kHz ⇡ 1.27 cm wavelength

I Spatial samples every 0.63 cm or less

I 3.65⇥ 5.8⇥ 2.4 m room requires > 200 million grid points

I 3D finite di↵erence model requires one multiply and 6
additions per grid point ) 70 billion FLOPS at Fs = 50 kHz

I 30⇥ 15⇥ 6 m concert hall requires > 3 quadrillion FLOPS
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Geometric Models

I Geometric acoustics models have lower complexity

I Source emits rays in all directions

I Specular reflections (di↵raction also possible)

I Build impulse response by recording time and amplitude at
receiver

I Choice of receiver size and number of rays is critical

Source

Receiving
volume
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Room Impulse Response (RIR)

RIR components:

I Direct line-of-sight

I Early reflections: relatively sparse first echoes

I Late reverberation: so densely populated with echoes that it is
best to characterise the response statistically.
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Rendering of dynamic scenes with geometric models

I When source moves recalculate RIR

I Still need to run a convolution with anechoic sound sample

Example:

I T60 = 2 s, Fs = 50 kHz: convolution requires 5 billion FLOPS

I Three sources and two listening points (ears) )
60 billion FLOPS

I 20 dedicated CPUs clocked at 3 Gigahertz

I FFT convolution is faster, if throughput delay is tolerable (and
there are low-latency algorithms)

I If physical accuracy not needed, perceptual methods provide
better option
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Digital waveguide networks (DWN)
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Input

Output

Fs = 44.1 kHz

I Network of bi-directional delay lines connected at scattering
junctions [Smith, 1985]

I Can be interpreted as network of acoustic tubes

I Question: How to set parameters (delay line lengths, network
connections, scattering matrix..)?
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Scattering delay network (SDN) [De Sena et al., 2015]

I Design DWN based on characteristics of a physical room

I Position nodes at first-order reflection
points

I Fully connected DWN network

I Mono-directional lines for
source-junction and junction-mic

I Each incoming delay line on the microphone rendered as if it
was a plane wave, using methods discussed in first part of talk
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SDN: approximation of geometric acoustics

I Correct rendering of LOS and first-order reflections in time,
amplitude and direction

I Approximation of second and higher-order reflections, less
important perceptually

I-order reflection II-order reflection Another II-order reflection
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SDN: alternative interpretation

I Can also be interpreted as model of network of acoustic tubes
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Advantages
I Less resources spent for less important part of room impulse

response (late reverberant tail)
I Also, not shown here:

I similar frequency-dependent RT60 to full-scale models
I similar echo density to full-scale models
I su�cient modal density
I axial resonant modes of room well approximated

I Orders of magnitude faster than convolution (alone!)
I All parameters of model derived from physical properties

Advantages w.r.t. other delay networks:

I No need for hands-on parameters tuning

I Physical interpretation ) spatialisation possible, e.g. using
microphone array as defined in the first part of the talk
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Perceptual evaluation [Djordjevic, 2019]

I Headphone-based (binaural) comparison (28 subjects)

I Higher pleasantness (p < 0.001) and naturalness (p < 0.001)
than comparable delay-network based method
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Conclusions

I Physical methods for spatial audio require significant
resources
I Recording and reproduction: many loudspeakers
I Room Acoustics Simulation: high computational complexity

I Known perceptual e↵ects allow to reduce requirements
I Recording and reproduction: exploit summing localization

e↵ect and small ICTDs to achieve larger sweet spot
I Room Acoustics Simulation: spend more resources for

important perceptual features
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Thanks for your attention!
(demos to come)

Questions?
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Parametrization of ICTD (time-delay microphone array)
I Convenient now to specify ICTD and ICLD functions of ✓s ,

including a parameter taking into account how much we rely
on ICLD compared to ICLD (time-intensity trade-o↵)

I Let the ICTD be defined
according to the delay that
would be observed on two
spatially separated
microphones as in figure:

ICTD(✓s , rm) = 2
rm

c
sin

✓
�0

2

◆
sin ✓s

where rm is the array radius
I This parametrization is convenient since it allows to easily

extend to the case of recording with circular arrays
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Parametrization of ICLDs

I Psychoacoustic curves give only extreme positions
I Could use di↵erent curves, for instance [De Sena et al., 2013]:

ICLD(✓s , rm) = 20 log10
sin

�
�0
2 + �(rm) + ✓s

�

sin
�
�0
2 + �(rm)� ✓s

�

where �(rm) is a parameter used to fit the extrema
I With this parametrization, a higher rm leads to more reliance

on ICTDs and lower ICLDs
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Localization uncertainty as a function of array radius

I Larger radii lead to:
I higher uncertainty for observer in the center
I lower uncertainty for observer away from the center

I Help reconcile long-stanging debate between academia
(preferring intensity methods) and sound engineering
community (also using time-intensity methods)
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Choosing array radius parameter

I Trade-o↵ between center and o↵-center

I If we don’t know how far the listener will move, then avoid
vertical bands mentioned before, which leads to

rm = rh

cos
⇣
✓e � �0

2

⌘
+ �0

2 + ✓e � ⇡
2

2 sin2
⇣
�0
2

⌘

where ✓e is angle of ear and rh is head radius

I Interestingly, larger head, means larger array!
I Examples:

I �0 = 60�, rh = 9 cm and thetae = 100�, then rm = 0.19 cm
I �0 =

360�

5 = 72�, rh = 9 cm and thetae = 100�, then
rm = 0.16 cm.
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More complex situations

I So far we assumed we know the direction of the plane wave

I Possible approach is to estimate direction of arrival (DOA)
and then artificially add ICTD/ICLD

I If multiple incoming waves, can estimated DOAs in time
windows (see e.g. Dirac/SDM/SIRR)
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Perceptual Soundfield Reconstruction
I Another approach is to connect each microphone with

loudspeaker
I Design the microphone directivity pattern to approximate

ICLD(✓s , rm) [De Sena et al., 2013]
I This makes DOA estimation unnecessary!

Perceptual Soundfield Reconstruction (PSR) Array

I 5 channels, uniformly distributed, 15.5 cm radius (optimal
according to

PSR Microphone Array

15.5 cm
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Microphone directivity that approximates ICLD(✓s , rm)
I First-order microphones (e.g. cardioid, hypercardioid) not

su�ciently directive for this purpose
I Second-order already su�cient (e.g. di↵erential microphone

array [De Sena et al., 2011])
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Results of PSR formal listening experiments:

I Comparable performance in the center of the array...

I but larger sweet-spot
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